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Marine ecosystems based on chemoautotrophic and
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ABSTRACT. Marine ecosystems based on chemosynthesis are widely distributed in suitable areas with an abundance
of reduced compounds. They are based on a strange symbiosis between chemoautotrophic (less often methylotrophic)
bacteria and some invertebrates. Two basic types of these ecosystems exist: “hydrothermal” in the sites of hydrothermal
venting and “cold seep” on various seeps with sufficient acceptable compounds. In the present review, their faunal
composition, trophic organization and evolution are briefly discussed. The unusually high number of living fossils at
hydrothermal ecosystems indicates the long evolutionary history and protective functions of these ecosystems. Some
living fossils even underwent adaptive radiation. On the contrary, some groups of marine invertebrates could not settle

vents due to their biological constraints.
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Characterization and occurrence of
ecosystems based on chemosynthesis

The geological research of deep-sea hydrothermal vents
along the sea-floor spreading centers led to the surprising
discovery of dense animal communities on the rocks in
the venting sites on the Galapagos Rift (Lonsdale 1977,
Weiss et al. 1977, Corliss et al. 1979) and East Pacific
Rise (Desbruyeéres et al. 1982). Primary producers of this
ecosystems are represented by free-living bacteria and
symbiotic chemoautotrophic (less often methylotrophic)
bacteria with strange giant obturate pogonophores and
bivalves (Desbruyeéres and Laubier 1983, Grassle 1985),
Symbiotic bacteria use energy of some reduced compounds
emanating from vents (especially HyS, CHy) for chemo-
synthesis (Felbeck and Childress 1988). Bacteria and
their hosts produce biomass for higher trophic levels that
included especially detritovores, carnivores and also some
parasites and symbionts (Laubier 1986).

The giant obturate pogonophere (= Vestimentifera) Riftia pachyptila
is gutless. Its third body segment (gonomere) contains special
voluminous tissue (trophosome) with sulfur bacteria (Jones 1981).
Riftia supplies symbionts by Hg2S, CO2 and Oz (Felbeck 1981).
Other obturate and pervinte (= “classical”) pogonophores are also
gutless, with symbiotic bacteria (Southward 1987). The exotic phyllum
Pogonophora is not widely known (for Czech review see Kril et al.
1993).

The giant bivalve Calyptogena magnifica (Septibranchia, Vesico-
myidae) possesses a functionless alimentary tract and its sulfur
endosymbionts eccupy specific regions of the gills (Fiala-Medioni and
Metivier 1986). The mixotrophic bivalve Bathymodiolus thermophilus
(Mytilidae) has a functional, but simplified alimentary tract. Sulfur
endosymbionts live also in its gills (Le Pennec and Hily 1984).

In the higher trophic levels of hydrothermal community, vari-
ous Mollusca predominate (Bivalvia, Gastropoda and Aplacophora),
Palychuota, Crustacea (Cirripedia and Malacostraca), Enteropneusta,
siphonophores (Coelenterata) from the family Rhodaliidae and fishes
(see Laubier 1986, 1989 for details).

Extremely thermaphilous terebellomarph polychaetes of the genus
Alvinella (“Pompeii worms”) (Alvinellidae) inhabit the hottest zone
of the hydrothermal community where anoxic hydrothermal fluid
with sulfides is mixed with seawater (Desbruy bres et al. 1982,
Chevaldonné and Jollivet 1993, Jollivet et al.  1995). These
worms exhibit peculiar development, reproductive behavior with
pseudocopulation (Zal et al.  1995) and peculiar nutrition that
is, they “cultivate” various morphological types of bacteria in an
intersegmentary space, on parapodia, on special emergences of cuticle
and on the inner surface of their tube (Desbruy eres and Laubier 1980,
Desbruy eres et al. 1985, Alayse-Danet et al. 1987). Other polychaetes
include detritophages, some carnivores and even commensals of the

mussel Bathymodiolus (Branchipolynoe symmytilida) (Desbruy eres et
al. 1985), Brachyuran crabs of the family Bythegraeidae nip off pieces
of individuals at colonies of Vestimentifera (Bythograea thermydron)
or “"Pompeii worms” (Cyanagraea praedator) (Williams 1980, Laubier
1986). Most species of anomuran decapods of the family Galatheidae
live also on sea bottom in the neighberhooed of hydrotherms and are
so considered as “facultative hydrothermal® only (Fustec et al. 1987).
Ectoparasitic copepods of the family Dirivultidae (Siphonostomatoida)
live on the tentacular crowns of the Vestimentifera (Humes and Dojiri
1980).

Subsequent expeditions documented the occurrence of
similar hydrothermal ecosystems at other regions of the
Pacific and Atlantic oceans:

(1) axial seamount of the Juan de Fuca Ridge (depth
1570 m) (Tunnicliffe et al. 1985) and Explorer Ridge
(Tunnicliffe et al. 1986)

(2) Guaymas basin in the Gulf of California (2000 m)
(Grassle 1982)

(3) spreading axes of the Fiji, Lau, Manus and Mariana
Back-Are Basins (1700 — 3800 m) (Jollivet et al. 1989;
Nautilau group 1990; Both 1986, Galchenko 1995;
Hessler et al. 1987, Desbruyéres and Laubier 1989)

(4) Mid-Atlantic Ridge (3600 — 3800 m) (Williams and
Rona 1986)

It is evident that hydrothermal communities occur on act-
ive oceanic ridges, and in back-arc basins where oceanic
crust is extending (Laubier 1989). These communities
can occupy even hydrothermal vents on the slopes of
active axial volcanoes at some regions (Craig et al
1987). The Guaymas Basin is exceptional because in this
case hydrothermal fluid percolates up through a thick
sequence of hemipelagic sediments (Lonsdale et al. 1980,
Simoneit and Lonsdale 1982). The observed differences in
species composition are caused mainly by different ages of
hydrothermal vents (Fustec et al. 1987), different hydro-
static pressure (Laubier 1989), temperature and chemical
composition of hydrothermal fluid (Laubier 1986), and
major distances and geographical barriers (Denis et al.
1993).

Recent discoveries established great differences in
composition of hydrothermal communities in some distant
geographical areas. Primary consumers in hydrothermal
communities of the West Pacific Back-Arc Basins are
radically different from those of the Eastern Pacific (Denis
et al. 1993). The primary biomass of these Western
Pacific communities is dominated by great mixotrophic
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mesogastropods of the genera Alviniconcha, Ifremeria
and Olgaconcha (Denis et al. 1893, Stein et al.
1988, Bouchet and Warén 1991, Gelchenko 1995); the
obturate pogonophores and mussel Bathymodiolus are
less abundant, and the mussel Calyptogena is missing
(Laubier 1993). Some tissues of snails Alviniconcha
(beds of mantle) and Qlgaconcha (gill) contain sulfur and
methylotrophic bacteria (Stein et al. 1988, Galchenko
1995). The Mid-Atlantic Ridge hydrothermal community
seems to be different also from “classical” East Pacific
type. Decapods Alvinocaris, Chorocaris and Rimicaris
(Bresiliidae), Segonzacia mesatlantica (Bythograeidae),
Munidopsis sp. (Galatheidae) and some polychaetes
prevail in this simple assemblage; obturate pogonophores
and bivalves are missing (Williams and Rona 1986,
Segonzac et al. 1994). Bresiliids, which consume mats
of the bacteria on the bottom, form the key link of the
food web here. Lastly, some differences are also obvious
between communities of the northern and southern part
of East Pacific (different families of Vestimentifera, sister
species in some groups). The present explanation rests
on subduction of the Farallon plate below the North
American plate, resulting in rather recent separation of
the northern and the southern East Pacific ridges 35
million years ago (Tunnicliffe 1988).

The hydrothermal vent environment is highly un-
stable and harsh for life (Moraga et al. 1994). The
hydrothermal vent continues its activity for only 20 —
100 years, chemical composition of fluid can also vary
considerably (Lalou et al. 1985). This apparent instability
is connected with variations in convection of magmatic
heat and tectonic¢ activity (Fustec et al. 1987, Tunnicliffe
1988, 1991). Therefore, hydrothermal assemblages have
only ephemeral life and their populations can be at
genetic disequilibrium due to extinctions (Jollivet et al,
1995). Moreover, hydrothermal vent fauna can be stressed
by high temperature (Chevaldonné et al. 1991, 1992),
natural radicactivity (Cherry et al. 1992), hypoxia and
colossal concentrations of sulfide, ammonia and some
heavy metals (Johnson et al, 1988, Edmond et al
1982, Michard et al. 1984, Jollivet et al. 1995). This
unfavourable environment is very selective and gave rise
to a special adaptations (see Felbeck and Childress 1988,
Laubier 1988, Jollivet et al. 1995 for details). Numerous
adaptations and rich sources of chemical energy cause
high rates of metabolism, rapid growth, continuous repro-
duction and good dispersal ability among hydrothermal
gpecies (Grassle 1984, Laubier 1989, Lutz et al, 1984).

According to proposed models (Hessler and Smithey
1983, Fustec et al. 1988), primary consumers form 75%—
90% of the biomass at hydrothermal communities. Bio-
mass of suspension feeders exceeds that of deposit feeders
considerably. The high biomass of the hydrothermal
communities (10 — 70 kg/m~? fresh weight) is comparable
to shallow-water ecosystems with the highest production
of biomass (coral reefs, for example) (Laubier 1989).

Rich benthic fauna based on symbiotic chemoauto-
trophic and methylotrophic bacteria was found later
also at other environments with numerous acceptable
compounds (HsS, CHy, ethylene, NH;, COs) on passive
or active sea margin areas:

(1) cold water seeps on accretionary prisms of the sub-
duction system near Oregon (depth 2000 m) (Suess et
al. 1985, Kulm et al. 1986), Barbados (Jollivet et al.
1990). Three different communities (700 — 900, 3000
— 35600, 5800 — 6000 m) have been studied on water
seeps of the Japanese subduction system (Okutani and
Egawa 1985, Ohta and Laubier 1987)

(2) cold water brine seep at the base of the limestones of
Florida Escarpment, Gulf of Mexico (3260 m) (Cary et
al. 1989)

(3) ephemeral cold water seeps at disturbances of un-
hardened sediments on the continental slope, New-
foundland (Laubier 1986)

(4) hydrocarbon ( = petroleum) seeps on the Louisiana
Slope, Gulf of Mexieo (600 — 700 m) (Kennicutt et al,
1985), off the California coast (Spies et al. 1980) and
at Sea of Okhotsk (Galchenko 1995)

The so-called “cold seep communities” enumerated above
display fauna similar to the hydrothermal assemblage,
but seem to be less diverse (Laubier 1989, 1993). The
Vestimentifera and bivalves of the genus Calyptogena
represent the primary producers. Dominant bacterial
symbionts of bivalves from hydrocarbon seeps and some
types of cold seeps are methylotrophic bacteria which
oxidize CH; (Childress et al. 1986, Kulm et al. 1986,
Galchenko 1995). Carbon dioxide produced here is
exploited by methanogenic bacteria living in the sediment
below oxygen/sulfide boundary. The rest of this gas is the
carbon source for the authigenie carbonates that cement
the sediment and form crusts and deep-sea stromatolites
above seeps (Kulm et al. 1986, Lein et al. in Galchenko
1995).

Different type of chemosynthetically-based communit-
ies (Laubier 1989) represents simple food webs formed
by bacterial mats and their consumers only. This type
was found at some sea areas with sulfide of biological or
geothermal origin, lakes and even in some caves (Stein
1984).

Nevertheless, the chemosynthetically-based ecosys-
tems would occupy a wider area. Vestimentifera and/or
bivalves with symbiotic bacteria are able to found simple
analogies of the cold seep communities at shipwrecks
(Dando et al. 1992) or on the dead body of whales (Laubier
1993). Perviate pogonophores occupy extensive areas on
cold sea bottom, especially in the deep sea. This group
lead a solitary, sessile life, buried in sediments (Ivanov
1963). Animals with symbiotic chemosynthetic bacteria
can constitute a part of the benthos and meiofauna at
ecosystems with high organic sedimentation based on
photosynthesis (mangroves, for example) where this fauna
employs accumulations of simple reduced compounds.
Such species have been discovered among gutless tubificid
oligochaetes (Giere 1981), gutless polychaetes of the
genus Astomus (Jouin 1978), gutless bivalves of the
family Solemyidae (Reid and Bernard 1980, Felbeck
1983), bivalves of the families Lucinidae and Thyasiridae
(Schweimanns and Felbeck 1985, Reid and Brand 19886,
Southward 1986), acoel turbellarians (Fox and Powell
1987), gnathostomulids (Powell and Bright 1981) and
nematodes (Polz et al. 1992). Hence, our knowledge of the
number of ecosystems which are based on chemosynthesis
will increase probably dramatically.

Remarks to the evolution of marine
ecosystems based on chemosynthesis

All ecosystems based on chemuosynthesis are noted for
high levels of energetic isolation. Reduced compounds for
“cold seep communities” and similar assemblages arise
still partially by bacterial conversion of organic material
from ecosystems based on photosynthesis (Cary et al.
1989). The hydrothermal vent ecosystem exploits the
compounds of geothermal origin and thus appears to be
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the most isolated ecosystem on the earth. Clearly, this
isolation cannot be absolute. Other ecosystems supply
the hydrothermal eommunity with oxygen, for example
(Southward et al. 1994).

The environment of hydrothermal vents seems to
be a likely candidate for the origin of life (Baross and
Hoffman 1985) and its macrofauna may be of very
ancient origin. On the contrary, cold seeps can be rather
recent environments that must be supplied by preexisting
organic material (Laubier 1989).

The hydrothermal and cold seep fauna exhibit rather
low diversity (Grassle 1985), but 95% of described species
are endemic and restricted to these areas (Laubier 1993).
Phyllum Pogonophora represents an enigmatic group that
is often related to the Upper Proterozoic and Cambrian
enigmatic group Sabellitida. Unusual body construction
supports assumptions about origin of Pogonophora during
explosive radiation of animal kingdom during Upper
Proterozoic and Lower Cambrian (Kral et al. 1993).
However, a large proportion of the recent hydrothermal
vent fauna may be of Mesozoic age (Tunnicliffe 1992).
Some of the endemic species belong to genera with many
species from deep sea environments (Munidopsis) and are
probably Cenoczoic immigrants (Newman 1985, Laubier
1993).

Unfortunately, we have available only a few records
of fossils in hydrothermal vent deposits. Several types
of tube structures (some reminiscent of those of Ves-
timentifera and Alvinella species) have been described
from massive sulfides of two Cretaceous localities: Samail
ophiolite, Oman (Haymon and Koski 1985) and Troodos
ophiolite, Cyprus (Oudin and Constantinou 1984). Well-
preserved Middle Devonian fauna of the Sibai ophiolite
complex (south Ural) also have a “modern” character. This
community is dominated by tubes of the Vestimentifera,
vesicomyid bivalves and tubes similar to those of “Pom-
peil” worms (Kuznetsov et al. 1991). On the contrary,
Carboniferous tube fossils from Tynagh (Ireland) are
morphologically different from Devonian and Cretaceous
tube forms from hydrothermal deposits (Banks 1985).
Sediments of the Tynagh strata arose in relatively shallow
basin and contain FPb-Zn deposits that were precipitated
from hot hydrothermal fluid percolating through the
carbonate mud (like Guaymas Basin).

It would be noteworthy to start sedimentological
research at recent hydrothermal vents and cold seep
areas and to find fossil analogues of their sediments
(Malahoff 1982). Systematic search for fossils of these
deposits is also needed to explain the evolution of unusual
hydrothermal and seep ecosystems.

A remarkably large number of living fossils have been
described from hydrothermal vent ecosystems. Most of
these animals occupy positions at higher trophic levels of
the hydrothermal community.

The slight bivalve Bathypecten vulcani (Pectinidae)
was found on Galapagos Rift and East Pacific Rise.
This primitive pectinid mussel is probably related to the
ancestors of related families Propeamussiidae and Pec-
tinidae. These families separated during Triassic period
(Fatton 1985). Bivalves of the family Vesicomyidae and
bivalve Bathymodiolus thermophilus are also Paleozoic or
Early Mesozoic relicts (Kuznetsov et al. 1991, Newman
1985). Cirripedians of the genera Neolepas, Eochionelas-
mus, Scillaelepas and Verruca are descendants of Jurassie
and Cretaceous lineages of this group (Newman 1979,
Laubier 1993). The Galapagos rift limpet Neomphalus
fretterae and some related archaeogastropods are probably
descendants of the superfamily Euomphalacea. This

species-rich group underwent a major radiation in the
Paleozoic and became extinet during the Cretaceous
Period. Shells of Neomphalus reach 30 mm in diameter
and are cap-shaped with a horizontally lying initial coil
(McLean 1981). Unusual bipectinate gill is modified for
filter feeding. Neomphalus is a sedentary form, associated
with groups of Riftia pachyptila (McLean 1981).

New immigrants to hydrothermal ecosystems had to
evolve adaptations for life in a specific harsh environment.
Species from tropical shelves came to hydrothermal vents
probably along active ridges (Newman 1979). Deep-sea
immigrants could conform te hydrothermal activity at
similar environment of cold seeps. Up till now, we do not
have any description of living fossils from this place. Cold
seeps probably do not represent environments suitable for
lang-term survival of living fossils.

Highly isolated ecosystems of hydrothermal vents
could offer a rich source of food, warm water for ther-
mophilic tropical species during periods of decreasing
temperature of sea water, protection from ultraviolet
irradiation, meteoritic impacts and an absence of some
predators (McLean 1981, Laubier 1989). Some groups of
living fossils (Cirripedia, Archaeogastropoda) even went
through successful adaptive radiations. )

Compared with usual rock substrates of deep-sea
environments, absence (or scarcity) of some major groups
(corals, sponges, bryozoa, echinoderms, peracarids) at
hydrothermal communities is apparent (Grassle 1985,
Laubier 1989). Potential immigrants from these groups
have a lesser chance to settle the hydrothermal environ-
ments due to their biological constraints.
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