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ABSTRACT. Alkali pyroxenite xenoliths from three voleanic fields in Uganda are largely composed of clinopyroxene (cpx) and
phlogupite—biotite (together > 70% of mode). Inter-field compositional variation in these minerals, shown by 749 cpx analyses and
237 mica analyses from 34 xenoliths, indicates bulk-chemical lateral variation in the xenolith source. The ubiguitous presence of
alkali clinopyroxenite xenoliths in all the fields suggesis this lithology is widespread beneath Uganda s Western Rift. Nd-Srand Pb

isotape systematicy indicate that the xenoliths are not cumulale from their host kamafugites, while P-T experiments indicate that the

kamafugites were inequilibrium with elinopyroxenite at ~>60 ki depth, It is argued therefore that the xenoliths are fragments of a

laterally variable clinopyroxenite layer in Uganda s Western Rift deep crusi—-mantle.

KEY WORDS: elinopyroxene. phlogopite—biotite, xenolith, lateral heterageneity, mantle.

Introduction

South West Uganda is noted for effusive carbonatite in the
northern Fort Portal field. ultrapotassic (K,O typically > 3
wt,% and K,0/Na,0 > 2; Foley et al. 1987) mafic kamafugite
diatremes in the central Katwe-Kikorongo and Bunyaruguru
fields, and potassic mafic-felsic flows in the southern Bufumbi-
ra field (Fig. 1). The central ficlds are the type area for kamafu-
gites. This classification (Sahama 1974) is based on the diagnos-
tic minerals of the three primary magma types recognised by
Holmes (1965) in his classic work on Uganda - kalungite
(melilite); mafurite (kalsilite) and ugandite (leucite), The unu-
sual activity of the South West Ugandan pravince is closely tied
to the tectonic setting of the uplifted and rifted western edge of
the East African Craton.

The K-silicate fields boast abundant alkali clinopyroxenite
xeneliths, Elsewhere in the world similar alkali clinopyroxeni-
tes are frequently interpreted as cumulate from their host alka-
line magmas. In South West Uganda it appears that a cognate
origin is precluded by the Nd-Sr and Pb isotope systematics of
Katwe-Kikorongo xenoliths. as is also a crustal derivation
(Davies and Lloyd 1989). In this study the authors showed that
the Katwe-Kikorongo hosts plot near to bulk Earth in terms of
¥Sr/M8r (0.7047) and "N/ Nd (0.51264) and the xenoliths
plot in a ¢losely adjacent field more radiogenic in Sr and less
radiogenic in Nd. The Pb isotope systematics discriminate
strongly between host lavas and xenoliths, The lavas have lim-
ited Pb isotope variation (**Pb/*"'Pb 19.09-19.19) and are rel-
atively radiogenic (*'Pb/® Pb 15.65-15.7 and *™Ph/*~Phb
39.58-40.03). In contrast the xenoliths vary significantly in Pb
isdtopes and on Pb/Pb isotope diagrams form linear arrays that
extend from slightly less radiogenic than the lavas (**Pb/**Pb
18.95) to values less radiogenic than Group I kimberlites (**Ph/
*MPh 17.01). A xenolith Pb isochron was considered unlikely
because Nd and Sr isotope systematics are similar for lavas and
xenoliths and close to bulk Earth and the authors preferred to
postulate a mixing line between end members with a lithos-
pheric and an asthenospheric signature, respectively. It ap-

pears that the Nd and Sr isolope results also rule out crustal
contamination.

In Uganda, the ubiquitous presence of the xenoliths in the
three K-silicate fields. and xenocrysts of similar material inthe
carbonatites, has led to models that have the potential to gener-
ate a widespread layer of clinopyroxenite beneath the West Rift:
(1) older alkali clinopyroxenite intrusive complex{es) in the deep
crust (Waters 1955); (2) carbonatite melt reacted with granitic
crust to produce “erystalline™ alkali clinopyroxenite (Holmes
1965); and (3), based on metasomatic + magmatic textures
{Holmes 1942; Lloyd and Bailey 1975), lherzolite mantle meta-
somatised and veined by incompatible- and LIL element-bear-
ing CO,, H,0 fluids and small volume melts (Lloyd and Bailey
1975; Bailey 1977; Lloyd et al. 1991).

A notable problem is that no lherzolite has been found, only
rare dunite and wehrlite showing replacement by phlogopite,
There is no geophysical evidence to indicate a clinopyroxenite
layer or complexes at shallow levels. The distinct negative grav-
ity anomaly in the West Rift is usually interpreted as a diapir of
hot and partially melted lithosphere, but the possibility that it
represents a layer of alkali clinopyroxenite (Lloyd and Bailey
1975) cannot be dismissed.

Aim and approach of this investigation

The aim of this project is to compare xenolith minerals to es-
tablish whether there is any consistent pattern of regional vari-
ation in the xenoliths, as might be expected if they are plucked
from a laterally extensive layer at depth.

Collecting strategy was dictated by time and aceessibility.
Twenty-five xenoliths were collected from four craters in the
Katwe-Kikorongo field of which three lic near the borders of
the field, namely Kikorongo to the NE (15 xenoliths), Machati
in the S-central area (2 xenoliths), and Murumuli to the SE (5
xenoliths). Kasenyi (3 xenoliths) is an isolated ¢one 12 km E of
the main field. Twe localitics were sampled in Bunyaruguru:
Nyungu Crater (2 xenoliths) and Chema Crater (2 xenoliths),
and 1 locality in Bufumbira— the Lutale flow (5 xenoliths).
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The xenoliths are composed largely of clinopyroxene + phlo-
gopite—biotite (together >70 modal%) with accessory apatite,
litanomagnetite, titanite and minor/trace perovskite, calcite and
spinel. Variations in clinopyroxene and dark mica compositions
account for a large proportion of the variation in xenolith bulk
chemistry. Hence, a first approach was microprobe analysis. The
xenoliths were probed at the NHM, London, and compositions
determined for 489 pyroxenes and 175 micas from the Katwe-
Kikorongo xenoliths, and a further 260 pyroxenes and 62 mi-
cas were obtained from the xenoliths of Buyaruguru and Bu-
fumbira.

Petrology a geochemistry

Xenolith clinopyroxene and phlogopite
compositions

With the exception of two syenite xeneliths, and rare cpx cores
from a single xenolith (see below), all clinopyroxenes are diop-
sides (Di,~Di, ), with about 25% plotting above Wo,, in the
pyroxene quadrilateral (see Table 1). Micas are phlogopite—

biotite ranging from Fe/(Fe+Mg) 0.22 to 0.54 and extend to

RWANDA

Fig. 1. Map to show the four South West Ugandan volcanic
' fields in the west branch of the East African Rift sys-
tem. From north to south: 1 — Fort Portal effusive
calcio-carbonatite; 2 and 3 — Central fields of Katwe-
Kikorongo and Bunyaruguru ultrapotassic (kamafugites)
diatremes; 4 — Southern field of Bufumbira potassic
mafic-felsic flows and pyroclasts — part of the larger
Virunga field (Uganda—Rwanda-Democratic Republic of
Congo). Thick black lines indicate major rift faults.

+ Xenoliths
O Lavas
© Tephra

T

0 2 4 6
Wit% TiO2

Fig. 2. Clinopyroxenes from Katwe-Kikorongo volcanics plot-
ted in terms of wt.% TiO, versus AL O, (after Mitchell
1985). The “flyer” lava pyroxene is indicated by an
arrow.

more aluminous compositions (max. 2.986 Al atoms pfu; see
137C #20 Table 2).

The Cr contents of both minerals are generally low. Pyroxe-
ne Cr,0, ranges from below detection to 1.15 wt.% with the
majority of 0.2 wt.% or less (see Table 1). Micas range from
below detection to 0.45 wt.% Cr,0, with the majority less than
0.1 wt.% (see Table 2). Detection limit for Cr in both minerals is
0.05% of oxide present. These Cr levels are similar to those of
the Cr-poor megacryst suite in South African kimberlites (Gur-
ney et al. 1991, and references therein).

Kenolith micas contain trace to minor Ba, generally between
0.2 and 1 wt.% BaO (see Table 2; detection limit: 0.05% of
oxide present), which typically correlates negatively with SiO,
and positively with ALO,.

Xenoliths and lavas compared
Xenolith and lava clinopyroxenes show distinct trends in terms
of TiO, versus Al O, (Fig. 2; compare 50 #72 with other analy-
ses in Table 1). Clinopyroxene crystal lapilli from the tephra
are both xenocrysts (fragmented xenolith material) and phenoc-
rysts. The lava clinopyroxenes plotting well within the xenolith
field are xenocrystic cores to phenocrysts (such cores have xe-
nolith isotopic signature, see Davies and Lloyd 1989). Xeno-
lith clinopyroxenes plotting on the lava trend petrographically
appear likely to be the product of xenolith-host melt interac-
tion. [The “flyer” (arrowed in Fig. 2; 50G #635, Table 1) is from
the extreme edge of an oscillation-zoned phenocryst]. The more
aluminous xenolith pyroxene probably reflects a higher pres-
sure of crystallisation (see Edgar et al. 1976; Lloyd 1981).
While lava pyroxenes show a clear trend of increasing Ti
accompanied by falling Mg# [(mol MgO/(MgO+FeQ)} and Si#
(mol 8i0,/(810,+Ti0,), xenolith pyroxene describes a broader
field (Fig. 3) that overlaps the more magnesian lava pyroxene
and extends to higher Si# —adjacent to pyroxenes from kimber-
lite and MARID. The xenolith field also extends to more iron-
rich (lower Mg#) clinopyroxenes. The isolated low-Ti, high-Fe
samples (indicated by arrows) are aegirine-augite—aegirine from
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Fig. 3. Clinopyroxene from Katwe-Kikorongo volcanics plot-
ted in terms of mol MgOAMgO+FeQ) (Mg#) versus mol
Si0,/(5i10,+Ti0,) (Si#) (adapted from Rock 1991). The
isolated low-Ti. high-Fe samples are aegirine-augite and
aegirine from two syenite xenoliths (arrowed).

one of two rare syenite xenoliths (S0F #s 3, 2t Table 1). Tephra
pyroxenes again plot as two populations. The anomalous cases
are the same as those described for the previous plot.

The broad compaosition field formed by xenolith cpx ap-
pears to imply variable conditions of erystallisation, which is
supported by evidence of poly-episodic, disequilibrium miner-
alogy in individual xenaoliths (see Xenolith heterogeneity).

Xenolith mica is more aluminous than the late-crystallising
mica in the lavas (Table 2, compare K4.5 #11, K11B #£1 with the
others) and lava phenocryst mica is more titaniferous (Fig. 4;
Table 2, K6.4 #1). Mica crystal lapilli in the tephra are of both
xenolith and lava provenance. In Fig. 4 the lava groundmass
micas plot in two groups which reflect different residual lig-
uids: (1)-a left-hand group of olivine melilitites (katungites;
Table 2. K4,5 #11); and (2) a right-hand group of nepheline
leucitites (Table 2, K11B #1). There is no immediate explana-
tion for the two xenolith micas that plot anomalously (indicat-
ed by broad arrow; left in Fig. 4 = 78E #38 and right = 78N #8,
sce Table 2). In terms of Mg# and Si# (Fig. 5) the lava micas,
although in separate groupings for the reasons described for
Fig. 4, show a distinct trend that is similar to that of the lava
pyroxene, i.e. of decreasing Mg# with increasing Ti (also Al,
see Fig 4). The phenocrysts plot at the Ti-rich end of this trend
while late-crystallising micas are richer in Mg- and Si. Xeno-
lith micas cover a broad composition field showing that like the
coexisting pyroxene they were also subject to variable condi-
tions of crystallisation.

The chrome content of pyroxenes and micas does not dis-
criminate xenolith and lava parageneses, In the lavas both min-
erals mostly contain less than (.2 wi.%, but so do a significant
proportion of the xenolith pyroxenes and micas. A few lava
phenocrysts (xenocrysts 7) show levels comparable to the high-
er values seen in the xenolith minerals (Table 2, K17 #1).

Barium levels in some lava micas are the same as for the
xenoliths, but they can reach >6 wt.% BaQO in the micropheno-

0 5 10
Wit% TiO2

Fig. 4. Micas from Katwe-Kikorongo volcanics in terms of
wt.% TiO, versus ALO,. The phenocrysts that plot
with the xenoliths (sample K 17,1 dashed vertical ar-
row) are large embayed plates and might be better termed
megacrysts since their origin as phenocrysts/megacrysts
1s ambiguous. The reason for the lava micas plotting in
two separate groups is given in the text; the two xeno-
lith micas that plot anomalously are indicated by short
horizontal arrows. Lava micas, unpublished data, A.D.
Edgar and F.E. Lloyd.

crysts and interstitial groundmass flakes of particular flows or
gjected blocks (e.g. K6.4 #17,Table 2). Such high levels have
never been observed in the xenolith micas. High Ba has been
reported for micas in other kamafugite lavas (cf. Edgar and Vuka-
dinovic 1992) and such micas are probably a product of late-
stage Ba enrichment in some kamafugite residual liquids.
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Fig. 5. Micas from Katwe-Kikorongo velcanics in terms of
Mg# versus Si#.
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Xenolith inter-crater and within-crater variation in the
Katwe-Kikorongo field

In terms of ALO, versus TiO, and Mg# versus Si#, the large
populations of Kikorongo pyroxene and mica compositions only
partially overlap the composition fields described by the small-
er populations of pyroxene and mica from the other three cra-
ters. Variation between xenoliths from the same crater and vari-
ation within single xenoliths (mineral zoning, two generations
of pyroxene/mica) is also evident. These features will be de-
scribed and illustrated more fully elsewhere (F.E. Lloyd, A.R.
Woolley, N, Eby and F. Stoppa in prep.).

Inter-field variation
When the Katwe-Kikorongo xenolith pyroxene and mica are
compared with those from adjacent fields, the overlap between
the large population of Katwe-Kikorongo samples and the ad-
Jjacent smaller populations is marginal. This seems to indicate
strongly that clinopyroxene and dark mica from the other fields
extend to compositions not found in Katwe-Kikorongo and that
the variation is real and not an artefact of sampling limitations,
Clinopyroxene (Fig. 6 ) from Bunyaruguru overlaps the lower
TiO,- and Al O,-pyroxene of neighbouring Katwe-Kikorongo
but extends to compositions with higher Al,O, at this low level
of TiO,, which reflect a small jadeite component as well as in-
creased Al (ca. 2-5% Jd: Table 1, 103 #s 19, 20; 108 #3).
Rare cores to Bunyaruguru diopside from a single xenolith
{see Fig. 6 and Table 1, 103 #19) and a Tschermak’s-rich rim
(see Fig. 6 and Table 1, 108 #17) show exceptionally high AL,O,
contents (see Xenolith heterogeneity). Bufumbira clinopy-
roxenes continue the main Bunyaruguru trend to higher-Al val-
ues (e.g. 137D #36, Table 1). Fort Portal xenocryst pyroxene
{Barker and Nixon 1989) plots with the Katwe-Kikorongo xe-
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Fig. 6. Clinopyroxenes from Katwe-Kikorongo xenoliths and
xenolith clinopyroxenes from adjacent fields on plot of
wt.% TiO, versus Al,O,. Omphacitic cores to Bunyaru-
guru diopside (sample #103) are arrowed; other anoma-
lous Bunyaruguru pyroxene all from #108: Jd-bearing
“clast” indicated by dashed wvertical arrow;
CaFe+CaAl+CaTi-Tschermak's rich rim to a “clast” in-
dicated by dotted arrow; high-Ti granule enclosed in
perovskite, plotting with Katwe-Kikorongo samples.

noliths. There is poor discrimination between the fields for py-
roxene in terms of Mg# versus Si#, as even from a single xenolith
pyroxene can show a large range in Mg# (see Xenolith heteroge-
neity).

Phlogopite-biotite (Fig. 7) shows a similar TiO, range for
all three fields extending to lower values for Katwe-Kikorongo
(e.z. SOE #37, Table 2: the lowest TiO, — 78E #38 — is anoma-
lous, see Fig. 4). Alumina varies more significantly: Bunyaru-
guru mica overlaps with Katwe-Kikorongo but extends to low-
er Al,Q, values (103 #7, Table 2); Bufumbira mica follows its
coexisting pyroxene with the highest Al,O, values (Table 2) sug-
gesting that higher-Al is a bulk-composition signature for these
Bufumbira xenoliths. Dark micas discriminate quite well be-
tween the fields in terms of Mg# versus Si# (Fig. 8). Katwe-
Kikorongo micas have the greatest Mg# range (50A #6-78K
#19. Table 2) and cover a higher range of Si# values (78F#12-
50E #37. the highest Si# is anomalous 78E #38 in Fig. 4} only
slightly overlapping Bunyaruguru and Bufumbira. The high Al
in the micas of Bufumbira is reflected in their low Si contents
(137D # 49, 137C #20, Table 2), while micas of Bunyaruguru
have lower Mg# (lowest = 104 #1, Table 2) than those of Bu-
fumbira but generally higher Si# and occupy a separate field
between Katwe-Kikorongo and Bufumbira (e.g. compare 103
#18 with 137D #49, Table 2). Higher Cr, in addition to higher
Al, also appears to be significant in Bufumbira clinopyroxenes
and micas which range to the highest values of Cr seen in the
Ugandan fields (see. 139 #6, Table 1 and 139 #10, Table 2,
respectively).

Xenolith heterogeneity and complex crystallisation
history

This study has revealed complex and different crystallisation
histories for many of the xenoliths. For example later-crystal-
lising pyroxene granules often have higher Mg# (¢.g. sample
781 #4, Table 1: avg Mg# 0.77) than the earlier coarse “clastic”
looking pyroxenes (781 #39, Table 1: avg Mg# 0.70) they sur-
round. Small mica flakes, in sub-ophitic to interstitial relation-
ship with the granules, typically have lower Mg# (e.g. 781 #357,
Table 2: avg. Mg# 0.69) similar to the early, coarse pyroxene.
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Fig. 7. Micas from Katwe-Kikorongo xenoliths and xenolith
micas from adjacent fields on plot of A1,O, versus TiO,.
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This may indicate that the miinerals are in disequilibrium, as
analyses of co-crystallising liquidus clinopyroxene and mica of
melting experiments on Ugandan lava and xenolith composi-
tions (Edgar et al. 1976; Lloyd et al. 1986) show similar Mg#.
Zoning in clinopyroxenes can be oscillatory but in other cases
resembles overgrowth of earlier more- or less-iron-rich diop-
side by later less- or more-iron-rich diopside.

A xenolith from Nyungu Crater, Bunyaruguru (#103) con-
tains dispersed “clasts” of highly strained colourless diopside
(e.g. 103 #29, Table 1) that are rimmed by unstrained green
iron-rich pyroxene and surrounded by iron-rich pyroxene gran-
ules (e.g. 103 #s 30, 14, Table 1) and biotite flakes (103 #s 7,
18, Table 2). Rarely, the colourless clasts contain anhedral very
pale greeny brown cores of an earlier Si-poor, Al- and Na-rich
(?) pyroxene, with trace Ni as well as Cr (103, #19, Table 1).
The analyses have low totals and a small degree of alteration
cannot be ruled out; trace K may indicate slight contamination
from mica flakes that are found along the strain lamellae. This
means that the end-member calculations will be compromised
{see Table 1 for conflicting results of IMA and Cawthorn and
Collerson). More of these cores need to be found and analysed
betore positive identification is made. In another Bunyaruguru
sample (#108) occasional rounded isolated cpx is jadeite-bear-
ing diopside (108 #3, Table 1) and heterogeneity is shown by
other pyroxenes in this sample (see Fig. 6 and caption; also
Table 1).

Lateral heterogeneity in xenolith carbonates and a
carbonatite connection

The four Katwe-Kikorongo craters sampled contain some xe-
noliths with carbonate which varies from calcite to Mg-calcite
to dolomite. The vast majority have SrO contents > 0.5 wt.%
suggesting a primary igneous origin. Where SrO levels are lower,
reaction with meteoric water and recrystallisation has probably
occurred. The carbonates show some inter-crater variations (Fig.
9): Murumuli clinopyroxenite carbonates are Mg-calcites, like
those of Kikorongo, but one Mg-calcite grain was found adja-
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Fig. 8. Micas from Katwe-Kikorongo xenoliths and xenolith
micas from adjacent fields on plot of Mg# versus Si#.
The single Bunyaruguru analysis with high Si (arrowed)
is from #103 in which the omphacite cores are found.

cent to dolomite with a small Mg-excess over stoichiometric
(23.9 wt.% MgO; tie-line in Fig. 9). A Kikorongo Mg-calcite has
the highest SrO content recorded (2.7 wi.%). Machati carbon-
ates are nearly pure calcite (zero MnO and trace FeQ) with
generally lower SrO contents than the carbonates of the other
craters; nearly pure calcite from Murumuli syenites has signif-
icantly higher SrO. The single carbonate found from Kasenyi is
dolomite.

The fact that only one xenolith from Bunyaruguru contained
carbonate (Sr-calcite) and that no carbonate has been found in
Bufumbira could be a consequence of the considerably smaller
xenolith populations investigated from these fields. Interestingly,
previous petrological studies of a different xenolith collection
produced a similar result (Table 5 of Lloyd et al. 1991) and thus
could reflect a greater presence of carbonatite in the Katwe-
Kikorongo field. Such a suggestion appears to be endorsed by
the recent discovery of a Sr-dolomite carbonatite bomb (F. Stop-
pa, A.R.Woolley, N. Eby and F.E. Lloyd, in preparation) in the
olivine melilitite tuffs of Murumuli Crater. This is incontrovert-
ible evidence of the activity, in the Katwe-Kikorongo field, ofa
separate, high-temperature carbonatite melt, intimately associ-
ated with K-rich olivine melilitite (katungite), which alsc ap-
pears to be reflected in the xenolith mineralogy of this field.

Implications for the deep crust—-mantle
beneath Uganda

There is no geobarometer for the clinopyroxenites. Pressure—
temperature liquidus experiments on Holmes™ three primary
magmas can suggest possible depths of clinopyroxenite deriva-
tion. Melting experiments on katungite (olivine melilitite), with
5% H,0 added, showed olivine as the liquidus phase up to 20
kbar. Above this pressure clinopyroxene replaced olivine on
the liquidus (ca. 1,200°C) and phlogopite separated at 80—100°

3.0
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Fig. 9. The SrO and MgO contents of carbonates from Ugan-
dan xenoliths, most of which are from the four Katwe-
Kikorongo craters. Tie-line joins adjacent grains of Mg-
calcite and dolomite in #50C, Murumuli crater, “Syeni-
tes” and “pyroxenites” are from Murumuli Crater. Sam-
ples from the other three craters are all pyroxenites.
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below this, suggesting the reaction olivinet+liquid =
phlogopite+liquid (Arima and Edgar 1983). Likewise olivine
was absent and clinopyroxene was the liquidus phase above 20
kbar with added H,0 + CO, (X;,= 0.75). Similar experiments
on biotite mafurite (phlogopite—biotite-+kalsilite+clinopyroxene)
showed a diminishing olivine field with pressure and at §,250°C
and 30 kbar clinopyroxene and phlogopite were the liquidus
minerals and there appeared to be a reaction relation between
olivine and liquid (Edgar et al. 1976), From these experiments
itappears that the kamafugite hosts to the xenoliths are in equi-
tibrium with clinopyroxenite at depths of ca. 60—90 km.

Although this investigation focuses on lateral variation, it
is striking that clinopyroxenite appears to be widespread, and
its main mineralogy is essentially the same. This would seem to
necessitate a horizon of alkali clinopyroxenite in the Ugandan
mantle beneath Katwe-Kikorongo and Bunyaruguru and extend-
ing north to Fort Portal to provide the xenocryst suite in these
rocks (Barker and Nixon 1989).

In the Bufumbira field olivine-rich xenoliths are more com-
mon (Holmes and Harwood 1937; Barafaijo 1995). Pressure—
temperature experiments by Edgar et al. (1980) on type ugan-
dite (leucite melabasanite) from this field, with 5% H,O added,
showed olivine persisting up to 30 kbar where it was joined by
clinopyroxene only 20°C below the liquidus, suggesting that
clinopyroxene may become the liquidus phase at P slightly >30
kbar. With H,O and CO, added (X, = 0.75) clinopyroxene,
orthopyroxene, and olivine are near-liquidus phases at 20 kbar
but at 30 kbar olivine is absent and garnet joins clinopyroxene
and orthopyroxene. Edgar et al. (1980) concluded that ugandite
could have a K-enriched (phlogopite is assumed to be a sub-
solidus phase) wehrlite or lherzelite source at ca. 90 km. In
which case it is possible that the clinopyroxenite layer becomes
more diffuse southward.

Such an alkali clinopyroxenite layer would equate with the
stockwork of metasomatised mantle proposed to exist beneath
rifted continental regions dominated by alkaline magmatism
(Lloyd and Bailey 1975; Bailey 1982). Mantle alteration is con-
sidered to occur by upward percolation of K-rich and incom-
patible- and RE-element-bearing media (supercritical fluids and
small-degree melts) together with carbonate melts towards ma-
jor weaknesses in crustal lithosphere {Bailey 1977). Mineral
separates (cpx, apatite) from Katwe-Kikorongo xenoliths show
LREE enrichment and MREE depletion (Davies and Lioyd
1989) which might indicate that source fluids/melts were in
equilibrium with mantle garnet.
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