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as areliable tool for studying the mechanisms of formation and
precise timing of glaciations.
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Over the last 20 years, MS measurements of sediments have
been used in paleoclimatic studies of loess (summarized by
Heller and Evans, 1995) and as a paleoclimate proxy in marine
limestones and shales (for example, Crick et al., 1997; Ellwood
ct al., 1999). In uncensolidated samples like those excavated
from archaeological sites, MS works as a proxy for climate be-
cause climate controls the magnetic properties of deposited sed-
iments, primarily as the result of pedogenesis (see Mullins, 1977,
for an carly summary). The result is higher production of mag-
netic minerals such as maghemite, magnetite, hematite, or pos-
sibly ferrimagnetic sulfides (Stanjek et al., 1994; Ellwood et al.,
1997) in soils and correspanding increases in MS during peri-
ods when climate is relatively warm, assuming that moisture is
available for pedogenesis. Work by Tite and Linington (1975)
and Singer and Fine (1989) showed that climate (both temper-
ature and moisture) can have a significant effect on the MS,
and that in general, warmer/wetter conditions enhanced the MS
signature during pedogenesis. Besides maghemite. Maher and
Taylor (1989) have shown that magnetite is readily produced
during soil formation. (Much of the work concerning the pro-

duction of ferrimagnetic minerals in soils has been summarized
by Fassbinder et al., 1990).

For paleoclimate studies, MS, independent of other meas-
urements, has been shown to be very sensitive to subtle chang-
es in total iron concentration of sediments (Banerjee, 1996).
Thus, the addition 1o sediments of maghemite or magnetite in-
creases the MS. Furthermore, the authigenic production of
maghemite produced by pedogenesis appears to be relatively
stable chemically (Mullins, 1977), resulting in a stable MS sig-
nature that is preserved in sediments.

Soils that are formed through pedogenesis outside caves
and shelters, along with their magnetic constituents, are eroded
and deposited within caves or deep rock shelters by wind, wa-
ter and other processes. This produces a signature of climate
that potentially can be identified by measuring the MS. One
test of this model is an evaluation of the within-site MS corre-
lation power, Afier performing such tests at a number of open
air and cave sites, we believe it is clear that excavation units
from the same locality can be correlated using MS variations
(Ellwood etal., 1994, 1995, 1996, 1997). At these sites, small-
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scale diagenetic effects, local disturbances, or other within-site
disruptions were not sufficiently extensive to destray the corre-
lation power of the curves produced.

We have now shown clear climatic correlations to the Last
Glacial Maximum in Portugal (Ellwood et al., 1998) and to inde-
pendently published climate trends such as established glacial
advances and retreats, pollen and other indicators (Denton and
Karlén, 1973; Ellwood ctal., 1996, 1997, 1998; Watts ct al.. 2000).
In addition, we have demonstrated the presence of a known
2500 year neoglacial climate cyclicity (summarized by Mitchell,
1976) in Konispol Cave samples (Ellwood et al., 1997). This ne-
oglacial cyclicity is independently observed in the Greenland
GISP2 ice core (O" Brian et al., 1995). Our previous work has
also shown that extremely fine-grained (< 0.1pm) soil-formed
maghemite is the dominant magnetic constituent responsible for
the MS we observe (for example, Ellwood et al., 1998).

Of course, there are sediments in which problems exist that
make correlation or paleoclimate estimation difficult or impos-
sible. However, many of these problems can be avoided by care-
ful, high-density, continuous sampling, treatments to samples
before measurement (such as separation of the fine fraction of
sediment by sieving), and careful evaluation of the sedimentary
sections being sampled. For example, it is ofien possible in ex-
cavation surfaces to identify zones of sediment non-deposition
or erosion, and these zones can then be taken into account dur-
ing final analysis. It has been argued that some cave-derived or
other non-climate related material is responsible for the observed
MS. However, most of these constituents in cave sediments are
relatively coarse-grained. To reduce this problem, we first meas-
ure the MS for the field-collected sample, and then we sieve
the sample and collect the < | mm fraction, for which the MS is
also measured. It is the post-sieving MS value that we now use
in the final presentation of results, but we also compare it in
the laboratory with the initial MS values to evaluate differenc-
es. With a few exceptions these differences are usually slight.

We report here the magneto-susceptibility event and eyclos-
tratigraphy (MSEC) method applied to the problem of archaeo-
logical site correlations and paleoclimate estimation at sites
across southern Europe. This work includes results from sites
located in Portugal, north central, NE and SE Spain, south cen-
tral France, Belgium and Albania. The method makes it possi-
ble to resolve some age ambiguities within and between archae-
ological sites in the region and to estimate relative palcocli-
mate at these sites, MSEC involves building a regional com-
posite reference section (CRS) from samples at archacological
sites from which isotopic dates, faunal information or cultural
affinities are available, and for which the magnetic susceptibil-
ity (MS) has been measured. The MSEC CRS then serves as
a standard to which MSEC data from other excavations can be
compared.

The MSEC method for correlation between cave sites is
based on the fact that regional, long-term climate cycles con-
trol, through pedogenesis, the magnetic material being created
in the region. Sampling for MSEC in conjunction with archae-
ological excavations provides data sets tied directly (o excava-
tion levels, isotopic dates and cultural associations. Because
MS variations appear to be controlled primarily by climate, and
because the effects of climate are regional, affecting large are-
as, MS trends identified at one site or in one excavation unit
appear at many sites/units within the region. These trends may
be modified locally, but in general the variations in MS trends
and magnitudes produced by changing climate provide strati-

graphic sequences that can be correlated between excavation
units that overlap in age. Correlated profiles are used here to
develop a CRS of profiles that in turn represent all the MS var-
iations within an area (e.g. Ellwood et al., 1996, 1997). This
CRS can be used for correlation or to estimate paleoclimate.
Thus MSEC has the potential to become another independent
methodology, alongside conventional methods such as sedimen-
tology and palynology, that can be used to correlate within and
between sites by tracing paleoclimatic change. MSEC avoids
many drawbacks of other methods, such as high sensitivity to
diagenetic changes, poor pollen preservation in caves, ambigu-
ous isotopic ages and the need to acquire oriented or very large
samples (MSEC can be performed on 2-10 gm samples).

In order to make a direct comparison between the caves
thus far collected, and to establish time lines between the ca-
ves, we use the graphic correlation method (see Shaw, 1964).
We began the compositing process with the construction of
time/depth/MSEC graphs based on radiocarbon dates in Upper
Pleistocene and Holocene sediments from Konispol Cave Al-
bania, EI Miron Cave, Spain, and Picareiro Cave, Portugal. From
these graphs, equivalent time points allowed us to build a CRS
for the last ~ 20,000 years. We then added additional caves in
Portugal and Spain, and a pollen record from a lake core in Italy,
where dates were available, to extend the CRS back to 40,000 years.
In addition we present here an extension of the MSEC CRS
back into the Middle Paleolithic using data from caves in south
central France, SE Spain, and Belgium.

The MSEC intervals represented in the MSEC CRS are in-
terpreted to reflect climatic trends, warmer/wetter during times
represented by hatched MSEC zones, versus cooler/dryer cli-
mates equivalent to open zones in the MSEC CRS. Because
MSEC reflects climatic changes, these data can be correlated
directly to the SPECMAP oxygen isotopic curve which pro-
vides a robust test of the method. New MSEC results acquired
from individual excavated sections can be applied directly 1o
the MSEC CRS and used either as a relative dating toal, for
correlation between sites or for paleoclimatic analysis. Howev-
er, such comparisons require high-density data sets and some
isotopic, cultural or biostratigraphic control. The method also
allows missing MSEC intervals from one site to be picked up

and identified in others.
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Palynological Studies from the Ochozska Cave and from the So-
Shvka Part of the Sloupsko-Sostivska Cave (Moravian Karst)
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ABSTRACT. From the Ochozskd Cave the samples from the two profiles were studied. The lower parts of the profiles contained
representants of the heliophilous cold steppes (Helianthemum, Thalictrum, Selaginella selaginoides, Ephedra), cold resistent
wood plants (Pinus, Betula, Salix) and hydrophilous plants and alges (Cyperaceae, Botryococcus, Pediastrum). These belong
most likely to the one cold phase of the Late Glacial. In the upper part of the profiles high amounts of the genus Tilia and of the
family Polypodiaceae were found. This accumulation was probably caused by special conditions during the sedimentation and it
is probably of the Early Holocene age.

From the Sosivka Cave individual samples were studied. They contained above all the steppe elements (Thalictrum, Galium,
Centaurea, Asieraceae, Ranunculaceae, Daucaceae, Poaceae) and a small amount of the trees pollen (Pinus silvestris, P. cen-
bra, Betula, Tilia, Alnus). Some samples contain cold elements (Selaginella selaginoides, Botrychium), other warmer ones (Teucrium,
Scabiosa). Their ages are still not determinated.

The sediments from the Kitlna cave are dated archeologically. Their palynospectra are similar to the inner part of the Sosivka
cave and they may be used for comparison with the above mentioned ones.

KEY WORDS: Moravian Karst, palynology, Pleistacene - Holocene.

Cave sediments from the Moravian Karst were not intensively
studied from the palynological point of view. Only Svobodovi
(1988,1992), Svobodova in Seitl et al. (1986) and Svobodova
in Svoboda (1991) studied these sediments sofar.

My studies were made in the sediments of the caves
Ochozska (the southern part of the Moravian Karst), Kilna

and So3uvka part of the Sloup-So¥tivka caves (northern part of
the Moravian Karst). Palynological studies were made in
the collaboration with further geological and archeological dis-
ciplines.

Alltogether 52 samples were examined by palynological
maceration. The samples from the Ochozska and Kiilna caves





