Generally, the occurrence of the Karpatian sediments suggests a minimum of the Karpatian transgression. An important fact is also the occurrence of these sediments in close vicinity of the boundary between Ottnangian and Lower Badenian sediments.

The two lines with occurrences of Karpatian sediments, running generally NW–SE, divide the area into three tectonic blocks. The southern and northern blocks are uplifted, while the central block probably dips to the NW.

References

Fig. 1. A sketch-map of the area studied.

“Gilbert Type Delta” versus “Accumulation Terraces” Models and Their Application to Middle Turonian-Early Coniacian Sedimentary Setting in the Intrasudetic Basin: a Discussion

Jurand WOJEWODA
Institute of Geological Sciences, Wroclaw University, pl. M. Borna 9, 50 – 204 Wroclaw, Poland

In 1986, in the first paper presenting the results of structural sedimentological analysis, the environmental schemes of the Intrasudetic Basin and the Nysa Trough during the Turonian and Coniacian were suggested (Jerzykiewicz, Wojewoda, 1986; Wojewoda, 1986). Just there, the term accumulation terraces, as related to hypothetical paleobedforms of the Cretaceous sea floor, was introduced. Somewhat later, my thorough field investigations as well as facial-pelogeographical analyses enabled to reconstruct those mega-bedforms in detail and to present the first paleoenvironmental model, based on geological facts. In this model, the syndepositionally rejuvenated topography of the sea floor caused by fault tectonics was suggested, which implied specific sedimentary scheme for the Intrasudetic Basin. This model was additionally enhanced in later studies (Wojewoda, 1997; Rotnicka, 2001).

In the late 90s new models were proposed. However, they did not consider all the previously documented facts. One of the models is definitely worth discussing (Ulicny, 2001). It bas-
Syndepositional tectonic activity in sedimentary basins is usually indicated by deformation of layering in density-unstable sediment setting. Because the bed disturbance is attributed to earthquakes, the deformed structures appear in continuous horizons, which can be traced on large areas. Extremely rarely it is possible to point to syndepositionary activity when homogenous sediments are/were deposited within a basin. This is dominantly due to lack of distinct marker layers. Additionally, the rheological uniformity of such rocks causes different response of sediments to a tectonic pulse: the deformed structures have a spatially arranged pattern and their features are alike of tectonic structures originating in cemented rocks. These observations are supported by sets of fossil deformational structures which developed in unconsolidated sandstones in Intra-Sudetic Basin in the Cretaceous.

There are three sets of syndepositional deformational structures observed in Cretaceous sandstones of Intra-Sudetic Basin, all interpreted as shear zones triggered by tectonic events. These are (i) feather-like shear zones, (ii) plain shear zones, (iii) complex shear zones. All of them are perpendicular to major sedimentary surfaces.

Feather-like shear zones are characterized by an en-echelon fracture pattern and only slight disturbance of layering. They occur in form of undulating zones of 15–20 cm width, without clear boundaries. The sets of small fractures have convergent orientation relative to shear zone planes.

Plain shear zones have sharp, straight boundaries and the width of about 5 cm. The material within the zone shows well developed fabric – wall-parallel arrangement of clastic material. Close to the plain shear zone walls, undulation of layering is also visible. Moreover, the sandstone bed as a whole may be displaced vertically along the shear zone by amount of a few centimetres.

Complex shear zones possess straight, sharp boundaries and are about 25 cm wide. Their typical feature is syndepositionary breccia occurring within the zone. The breccia is formed of blocks of layered mother-beds surrounded by fluidized sand. The fluidized portion of material shows in places zone-wall-parallel arrangement. Occasionally, undulation of layering at shear zone boundary is also visible.

Syndepositional origin of these shear zones is indicated both by their discontinuity – they disappear either within a bed or on bed boundaries – as well as by their continuity in bottom portions of beds. All of the structures were observed on an elongated area of Cretaceous sandstones occurrences, trending NW-SEE. They show constant spatial orientation in the whole area of investigations. The above features, thus, suggest that the deformation of sand deposits was due to basement fault activity, which assisted sand sedimentation in Intra-Sudetic Basin during the Cretaceous.

References


