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The problem of determining palaeotectonic setting of old volcanic 
suites becomes quite challenging in metamorphosed terrains out 
of original structural context. In Silesicum (NE Bohemian Massif, 
Czech Republic), near the eastern termination of the Rhenohercy-
nian Zone of the Variscan chain (Franke 2000), petrologically ex-
tremely variable metavolcanites occur as a part of the palaeontolo-
gically dated Devonian sedimentary sequence of the Vrbno Group 
(VG). Current controversies in interpretation of the petrogenesis 
and geotectonic setting of the VG goes partly on account of the se-
parate use of a relatively narrow range of geological, petrographic, 
geochemical and/or petrophysical methods in previous studies. In 
addition it reflects a polyphase tectonometamorphic overprint; the 
rocks of the VG were deformed, imbricated and metamorphosed 
jointly with their mainly metagranitic Cadomian basement (Schul-
mann and Gayer 2000 and references therein). 

Regardless the presence of greenschist-facies metamorphic 
assemblages, volcanic structures are locally well preserved. Thus 
the primary character of the volcanic products can be determined: 
pillow lavas, ignimbrites, banded tuffs, agglomerate tuffs and 
subvolcanic dykes. In the studied southern part of the VG, volca-
nosedimentary and bimodal volcanic rocks occur in two approxi-
mately N–S trending belts, separated by little deformed Cado-
mian metagranitic parautochton (the Oskava Block) (see also 
Aichler et al. 2004): (1) The geochemically relatively primitive 
Western Volcanic Belt (WVB), restricted to a narrow rim of the 
Cadomian basement, is characterised by an abundance of meta-
sediments accompanied by mostly basic–intermediate metavol-
canites; acid volcanites are subordinate. (2) The more evolved 
Eastern Volcanic Belt (EVB), covering a significantly larg-
er area between Malá Morávka and Uničov E of the Oskava 
Block, is predominantly metavolcanic. The relative proportion 
of acid volcanic products is much larger. In addition, there are 
rare felsic dykes (rhyolites and comendites/pantellerites) cut-
ting the Oskava Block itself. Finally, numerous dolerite dykes 
penetrated both Cadomian and Devonian sequences.

The metavolcanites of the Western Volcanic Belt are exclusi-
vely calc-alkaline in chemistry. Basalts–andesites are of submarine 
origin as shown by locally preserved pillow lavas. The NMORB-
normalized spiderplots (Sun and McDonough 1989) are characte-
rized by marked depletions in Nb, Ti and Sr. The LILE contents 
are extremely variable, reaching up to c. 450 × NMORB. Such 

remarkable LILE/HFSE enrichments point to a continental arc 
geotectonic setting (e.g. Pearce and Parkinson 1993, Tatsumi and 
Eggins 1995). The chondrite-normalized REE patterns (Boynton 
1984) are rather flat (LaN/YbN = 3.60–7.45; LaN/SmN = 2.33–3.12). 
Both ratios increase with SiO2 as does the magnitude of the Eu 
anomaly (Eu/Eu* = 0.91–0.66). The Nd isotopic data are compa-
tible with derivation from a moderately depleted mantle source 
(ε390

Nd ~ +3.3, TDM
Nd = 0.83 Ga – a two-stage Nd model age of 

Liew and Hofmann 1988). 
The felsic (rhyolitic, SiO2 = 71.8–81.7 wt. %) samples from 

the WVB show higher degree of LREE/HREE fractionation 
(LaN/YbN = 4.39–8.04; LaN/SmN = 3.26–4.91). The Eu anomaly is 
significantly deeper (Eu/Eu* = 0.75–0.14) and its magnitude ge-
nerally increases with rising silica. The LREE and HREE drop in 
the same direction. The chemistry of rhyolites also resembles a 
volcanic-arc geochemical signature (Pearce et al. 1984) and their 
Nd isotopic composition is in line with their possible derivation 
from immature crustal source or by nearly-closed system frac-
tional crystallization of the parental basaltic melts (ε390

Nd ~ +2.9, 
TDM

Nd = 0.86 Ga). The importance of feldspar(s) and apatite frac-
tionation is supported by a marked drop in Sr, P, Eu and Ti with 
increasing SiO2. Role for contamination by geochemically im-
mature and isotopically undistinguishable Cadomian basement is 
difficult to assess, even though some upper crustal contribution is 
unequivocal based on δ18O values (10.3–13.0 ‰ SMOW) elevat-
ed for all samples (Davidson et al. 2005). 

In the Eastern Volcanic Belt abundant alkaline volcanics 
span the whole compositional range from alkaline basalt to co-
mendite, with acid rocks prevailing in outcrops. At least partly, 
their structures indicate subaeric origin (agglomerate tuffs, ig-
nimbrites). The NMORB-normalized spiderplots differ striking-
ly from the western belt by the absence of Nb trough. For the 
samples with SiO2 < 69 wt. % is characteristic depletion in Ti, Sr, 
P and Eu. While the LILE exceed 1250 × NMORB, HREE are 
enriched only c. 1.5–5.5 times. The REE patterns are variable; 
the least fractionated samples are characterized by low total REE 
contents and practically lack any Eu anomaly (Eu/Eu* = 0.9, 
ΣREE ~ 320 ppm), whereas the most fractionated samples have 
high total REE contents and deep Eu anomaly (Eu/Eu* = 0.2, 
ΣREE ~ 890 ppm). The mafic alkaline rocks of the EVB are rep-
resented by a volcanic bomb in agglomerate tuffs, whose radio-
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genic Nd documents its independent position. It points to Devo-
nian partial melting of a time-integrated, strongly LREE-de-
pleted mantle source with little scope for crustal contamination 
(ε390

Nd = +6.9, TDM
Nd = 0.55 Ga).

The felsic rocks of the EVB have Al2O3 concentrations higher 
than 1.33 × (FeOT + 4.4) and thus can be classified as comendite 
and comenditic trachyte (MacDonald 1974). They show general-
ly highly fractionated REE patterns (LaN/YbN = 1.84 to 10.20; 
LaN/SmN =1.73–5.32,) with negative Eu anomalies deepening 
with increasing degrees of fractionation (Eu/Eu* =0.18–0.11). 
The total REE contents decrease from 943 to 187 ppm with in-
creasing silica (i.e. increasing degrees of fractionation), reflec-
ting a concomitant drop in LREE and HREE. The zircon typo-
logy (Wilimský et al. 2005) and whole-rock geochemistry of the 
acid volcanics resemble Within Plate Granites (WPG, Pearce et 
al. 1984). Additionally, these rocks show high contents of HFSE 
(Nb, Ta, Y, Zr) as well as high Ga/Al and Fe/Mg ratios, typical 
for within-plate, A-type igneous activity (Eby 1990, Collins et al. 
1982). Their radiogenic Nd (ε390

Nd ~ +2.8 to +3.8) and primitive 
87Sr/86Sr390 (~ 0.704) rule out derivation from mature crustal sour-
ces; the rather heavy oxygen (13.7–15.7 ‰ SMOW), however, 
precludes a closed-system fractionation from the Earth’s mantle 
(Hoefs 2004). Viable hypotheses thus involve intracrustal deriva-
tion, probably of the mainly granitic Cadomian basement of the 
Oskava Block (Hanžl et al. in review).

Most of the dykes penetrating the more westerly Oskava 
Block are alkaline, closely resembling the chemistry of the vol-
canic rocks from the EVB (ε390

Nd = +2.8; oxygen slightly lighter, 
δ18O = 12.0 ‰ SMOW). Rarer seem to be dykes with an overall 
calc-alkaline, WVB-like chemical signature. 

Finally, the tholeiitic dolerite dykes and sills have remarkably 
primitive isotopic chemistry. The Nd isotopic signature is compa-
tible with direct derivation from a Depleted Mantle source in De-
vonian times (with ε390

Nd = +7.8 to +8.0, TDM
Nd = 0.46–0.48 Ga) 

and this is also in line with the oxygen isotopic data (δ18O = 5.5 to 
6.6 ‰ SMOW). The elevated Sr isotopic ratios (87Sr/86Sr390 = 0.705 
to 0.706) and less radiogenic Nd compositions some of the sam-
ples (down to ε390

Nd = +5.3) can be explained by crustal contami-
nation. Such scenario is confirmed in many NMORB-normalized 
spider plots by positive anomalies of Rb, K, Sr and Pb as well as 
Nb troughs. 

Patočka and Valenta (1996) with Patočka and Hladil (1997) 
outlined a model in which the volcanites of the VG originated 
in a volcanic arc geotectonic setting with a transition to a back-
arc spreading. According to these authors, the apparent scarcity 
of volcanites with a destructive margin geochemical signature 
could be due to a deep erosion of the former arc, documented by 
accumulation of large masses of quartzites. The current study 
has indeed confirmed such a view. The metavolcanic rocks in 
the VG apparently form two distinct volcanic provinces: (1) 
western with a most likely convergent geotectonic setting and 
(prevailing) submarine origin, and (2) eastern, at least partly 
subaeric, back-arc rift-related alkaline suite. The original con-
figuration of both volcanic sequences, preserved only as frag-
ments, is still largely open to debate. Based on palaeomagnetic 
data, the original orientation of the Devonian basins in Moravia 

was E–W (Hladil et al. 1999). The subduction was most like-
ly south-dipping (Franke and Żelażniewicz 2000). The Devo-
nian basins seem to have rotated c. 90 degrees clockwise in 
the Late Devonian–Early Carboniferous (Hladil et al. 1999). 
Following this rotation, the EVB could have been thrusted 
eastward (cf. Schulmann and Gayer 2000) over the Cadomian 
basement to which the WVB stuck as a relative parautochton. 
This scenario is in line with the conspicuously zoned distribu-
tion of the Devonian volcanic rocks as well as our observa-
tion of the tectonic contact between pillow lavas and overlay-
ing lowermost members of the Devonian VG sequence in the 
WVB. 
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Character and kinematics of the meridionally trending lineations 
in the Orlica-Śnieżnik Dome (OSD) have been widely discussed 
and diversely interpreted. Because this lineation is composite tec-
tonic feature (neglection of that fact can lead to erroneous, simpli-
fied conclusions) its interpretation has to be carried out with re-
spect to the superimposed deformational events distinguished in 
rocks of the OSD. The very important aspect of this investiga-
tion is the correlation of N-S trending tight recumbent folds pre-
served mostly in metapelites of the Stronie formation and similarly, 
N(NE)-S(SW) trending stretching lineation observable mostly in 
orthogneisses. The N-S trending lineation in the Stronie formation 
is considered to be associated with the N-S trending tight folds 
(e.g. Teisseyre 1975, Don 1982). In gneisses, the regional elonga-
tion along N-S trending rodding lineation could be the result of 
either coincidental strain due to N-S tectonic escape induced by 
the E-W shortening (Żelaźniewicz 1988) or the NE-SW strike slip 

in transpressional regime (Cymerman 1997). Żelaźniewicz (1988) 
connects development of N-S stretching lineation with the early 
tectonic stage of the OSD gneisses evolution, whereas Cymerman 
(1997) assumes that all tectonic features of the gneisses developed 
during one deformational event. 

On the basis on structural reconstruction and geothermome-
tric calculations carried out for marbles of the Stronie formation 
it can be stated that the N-S trending linear structures observed in 
the rocks of the Stronie formation result from two separate events 
characterised by different metamorphic and kinematic conditions. 
This explains the ascertained occurrence of two lineations: (i) in-
tersection and (ii) stretching, where each of them becomes locally 
dominant. Marbles were chosen because of their rheological pro-
perties allowing for a good distinction between tectonic features 
developed during consecutive tectonometamorphic stages. The 
earliest distinguished N-S trending lineation in marbles is defined 


