Vertically Decoupled Thickening and Exhumation Processes in Orogenic Supra- and Infra-Structure During Building of Gemer-Vepor Continental Wedge

Ondrej LEXA1, Karel SCHULMANN2, Petr JEŘÁBEK1 and Raymond MONTIGNY2

1 Institute of Petrology and Structural Geology, Charles University, 128 43 Prague, Czech Republic
2 Université Louis Pasteur, EOST, UMR 7517, 1 Rue Blessig, 67084 Strasbourg, France

Thickening of Gemer supracrustal unit occurred through development of wide positive cleavage fan (GCF) structure recently dated at 130–120 Ma using K/Ar and monazite U/Th method. This crustal scale structure is characterised by development of steep fabric in the core of the GCF associated with vertical extrusion of deeper portions of the Gemer Unit. In contrast, the Vepor infrastructural unit shows development of flat mylonitic fabric in deeper part of the basement associated with homogeneous burial. The internal deformation of the Vepor basement is poorly dated, but it is bracketed by onset of inversion of the Zliechov basin to the north (~110 Ma) and 40Ar/39Ar micas and hornblende cooling ages in range 80–90 Ma. These two contrasting tectonic regimes were separated by greenstreak facies mylonitic basement rocks and large portions of weakly deformed basement material. The plausible tectonic model explaining structural and metamorphic evolution of both crustal levels suggests existence of neutral level that is most likely located between Gemer and Vepor interface (Gemer-Vepor Contact Zone – GVCZ). This zone served as a decoupling horizon separating vertically elevated rocks from those, which were simultaneously buried. The hanging-wall Gemer Unit thickened by convergent flow while the Vepor Unit burial occurred by divergent flow or “syn-burial ductile thinning”. These competitive processes are registered by development of the GCF in the Gemer Unit and by PT gradients of different structural levels in the Vepor Unit. The lower crustal flow in the Vepor infrastructure progressively generated strong horizontally oriented mechanical anisotropy leading to continuous decrease of buckling resistance of the pile followed by large scale folding of the Vepor-Gemer multilayer system at ~80 Ma. The weakly deformed upper part of the Vepor basement surrounded by weaker Lower Paleozoic Gemer rocks and mylonitized lower crust dominated by amphibolite facies mica schists and gneisses represented a rigid layer controlling wavelength of crustal scale buckles. During folding the orogenic lower crust was exhumed by viscous extrusion along narrow belts when the folding mechanisms passed from active to passive amplification. We propose, that during this process the GVCZ was reactivated by fold hinge parallel slip (Trans-Gemer Shear Zone) of the suprastructure, commonly termed as “unroofing” of the Vepor basement. This process likely results from non-cylindrical growth of crustal buckle as well as from possible changes in far field forces responsible for development of large-scale Upper Cretaceous sinistral shear zones.

References