suggested that the Tibetan Plateau may have acted as the updoming source of subduction during the Early Cretaceous(Tang and Gao, 2004). This suggests that subduction processes have been active beneath the area since the early Cretaceous.

The Tertiary Stress Field Evolution in the Eastern Part of the Bükk Mountains, NE Hungary

Norbert NÉMETH

University of Miskolc, Department of Geology and Mineral Deposits, H-3515 Miskolc-Egyetemváros, Hungary

The Bükk Mts. consists of Paleozoic and Mesozoic rocks surrounded by Tertiary sediments and volcanics of the Pannonian basin, so it can be regarded as an uplifted and exhumed part of the basement. According to the 43±8 MY cooling ages of Dunkl et al. (1994) (apatite fission track, cooling under 70°C) and the Late Eocene age of the oldest Tertiary sedimentary rocks (limestone with Nummulites) of the Bükk Mts. the first Tertiary exhumation occurred in the Middle Eocene. After some periods of sedimentation and volcanism the present state is the almost perfect exhumation of the basement rocks with well-defined edges around and with few remnants of the cover inside the mountains. These basement rocks on the steep slopes of
the mountains offer several outcrops with well-preserved striation on fault planes of variable orientation. Some fault planes were active in two or more phases of the deformation history, so based on the observed overprinting relations the phases can be separated and the relative ages of the movements also can be stated. These features are very favourable for fault slip analysis and stress inversion. On the other hand, lack of the coeval sediments prevents the observer from direct dating of the deformation phases.

In my analysis I used the fault slip data of about 70 outcrops (22 of those with more than 10 unambiguous data of different plane-striae pairs, 655 such pairs altogether) from the eastern part of the Bükk Mts, on a cca. 80 km² area collected during the last two years. I measured the orientation of the fault planes and the slickenlines (striae or slickolites) on these planes. I observed the shear sense indicators and overprinting relations where it was possible. Based on these, I defined sets of striae which could be formed during a single deformation phase with a nearly constant stress field. For stress inversion I used the p-T dihedra method (Angelier 1984) because the necessary inputs of this method were suitable for the collected data set and, because of the limited validity of the assumptions needed for the inversion, there is no possibility to reach a level of accuracy higher than provided by this method. Construction was carried out by the StereoNett 2.46 software of J. Duyster.

The sets of striae were grouped into “movement systems” based on the kinematic similarity of the movements on similarly oriented planes of each outcrop. I strived to minimize the number of these movement systems, so the ones with a difference less than 10° between the estimated principal stress directions were merged if overprinting relations did not contradict it. In this way there remained five movement systems which were active in the whole area and possibly beyond it; some other systems occur only on some adjoining sites and seem to have a local role only. As direct dating of the movement systems was impossible, in the last step I tried to fit in the data with the regional stress field analyses (Márton – Fodor 1995) and with the sedimentary and volcanic records (Pelikán 2002), in this way associating an assumed age to each of them. This step was made from the youngest system towards the previous ones, so I introduce them in an inverse chronological order (fig 1).

System 5 characterized by E-W shortening and WNNE-WSE sinistral strike-slip faulting is connected with the faults of the last uplift and the edges of the present Bükk Mts (Németh 2005), so its assumed age is Late Miocene-Pliocene; it may have been active even in the Quaternary. System 4 characterized here by dextral faulting on E-W strike correlates well with the Karpathian state of the regional stress field according to Márton and Fodor (1995). System 3 is characterized by NNE-SSW extension and correlates with the Eggenburgian system of Márton and Fodor (1995). System 2 characterized by NE-SW directed highest principal stress and corresponding strike-slip faulting cannot be correlated with known regional systems, but it is definitely older than the overprinting System 3 so its assumed age is Oligocene. System 1 is characterized by N-S shortening and large-scale overthrusts with considerable amount of uplift. It seems to be connected with zigzag folds and a deformation style change, so I assume it to be coeval with the Middle Eocene cooling age determined by Dunkl et al. (1994). Brittle deformation elements older than these always are associated with folding.

References