The area of Spišská Magura and Podhale region is composed mostly of Mesozoic and Paleogene sequences. The most measurements were done in the Paleogene sediments.

In the study area we distinguished ten deformation stages connected with 1) E-W compression generated in strike-slip stress regime (?Paleocene), 2) NW-SE compression and perpendicular (NE-SW) tension generated in compressive strike – slip regime (Egerian–Eggenburgian), 3) NNW-SSE extension generated in pure extensive tectonic regime (Eggenburgian – Ottnangian), 4) NE-SW extension generated in pure extensive stress regime (Ottnangian–Karpatian), 5) NW-SE extension generated in pure extensive stress regime (Karpatian), 6) NW-SE compression activated in pure compressive stress regime (Sarmatian–Pannonian), 7) NE-SW compression generated in compressive stress regime (Pannonian), 8) NE-SW compression activated in compressive strike-slip stress regime (?Pannonian), 9) NW-SE extension activated in pure extensive stress regime (?Pontian–Pliocene), 10) ENE-WSW extension generated in pure extensive stress regime (?Pliocene–Quaternary).

These ten deformation stages we divided in two groups. The first group contains structures that were rotated to their recent position depending on uplift of the crystalline core of the High Tatras Mts. that started in Upper Miocene, according to FT dates from apatites (Kříž 1977, Kováč et al. 1994, Struzik et al. 2003). This group contains the first six deformation stages originated from ?Paleocene up to the Badenian period.

The second group contains last four deformation stages that are the youngest structures originated after tilting of the High Tatras Mts. from ?Sarmatian up to the Quaternary period.

References


Garnet Pyroxenites from Eastern Transylvanian Basin: an Integrated Textural and Geochemical Study

Attila TÓTH, Gábor DOBOSI, Andy BEARD, Hillary DOWNES, Enikő BALI and Csaba SZABÓ

Since the lower crust and the upper mantle cannot be sampled and studied directly, deep seated xenoliths from basaltic, kimberlitic and lamproitic extrusions provide important information on the petrologic and geochemical composition, rheological state, thermal evolution of the lithosphere. These xenoliths, fragments of wall rocks entrained by magmas at upper mantle and lower crustal levels, have been carried to the surface by alkaline basalts extreme rapidly, probably in less then 60 hrs (Kushiro et al. 1974, Mercier 1979).

Petrologically, the mantle xenoliths are mainly peridotites (lherzolite or harzburgite) with lower amount of spinel and garnet pyroxenites which represent less than 10% of the total volume of shallow mantle in the Carpathian–Pannonian Region based on our experience. Pyroxenite layers (veins? lenses?) can be seen as small-scale heterogeneities in the geophysical studies, however these methods cannot offer a detailed picture of the lower crust and the upper mantle (Chen et al. 2001). Garnet pyroxenite xenoliths are rare in alkaline basalts; some examples are: Israel (Esperanca and Garfunkel 1986, Mittelefeld 1986), SE Australia (Irving 1974, Wilkinson et al. 1974, Griffin et al. 1984, O’Reilly and Griffin 1995), SW USA (Shervais et al. 1973), Hawaii Islands (Wilkinson 1976, Frey 1980) and Eastern Transylvanian Basin, Romania (this study).

The Persani Mts. in the Eastern Transylvanian Basin is the easternmost Plio-Pleistocene alkaline basaltic volcanic field in the Carpathian–Pannonian Region. The products of the volcanic activity are lava flows and pyroclastic rocks, in which peridotites as xenoliths from the upper mantle can often be found. Besides peridotite xenoliths, spinel and garnet pyroxenites are also common. Garnet-bearing pyroxenites composed mainly of primary garnet, spinel, ortho- and clinopyroxene. The secondary mineral phases in the studied xenoliths are plagioclase, amphibole, spinel and ortho- and clinopyroxene. Textural observations suggest deformation events and mineral reactions, as the results of changes in stress, P-T conditions and melt/rock interaction during the evolution of the upper mantle beneath the region. Primary clino- and orthopyroxene frequently contain exsolution lamella of the other pyroxene (sometimes they are curved). Garnet often contains, amphibole, ortho- and clinopyroxene inclusions, exsolved needles of rutile and is always surrounded by symplectitic intergrowth of secondary ortho- and clinopyroxene, spinel and plagioclase.

Thermobarometric calculation was carried out based on electron probe microanalysis data of the primary rock forming minerals. Equilibrium pressure was estimated using garnet-orthopyroxene barometry (Harley and Green 1982), yielded between 1.4 and 1.7 GPa, whereas equilibrium temperatures are in the range of 1030–1140 °C (based on the garnet-clinopyroxene thermometers of Ellis and Green, 1979). The majority of the primary clinopyroxenes shows the usual chondrite normalized REE pattern of upper mantle clinopyroxenes coexisting with garnet (i.e. enriched in LREE and depleted in HREE). However, some of them are enriched in HREE, which is a simple enrichment in HREE of “normal” clinopyroxenes without changing their LREE concentration. The REE pattern of primary garnets shows depletion in LREE and enrichment in HREE, whereas that of the symplectite coronae around primary garnets is slightly enriched in LREE, showing flat REE pattern, sometimes with negative Ce anomaly. The bulk trace element composition of the garnet pyroxenites was calculated based on the garnet and clinopyroxene compositions and their modal abundance. The calculated trace element patterns are quite similar to each other and very similar to MORB composition, too.

The wide petrologic variability of the studied mantle xenoliths shows that the upper mantle beneath the Eastern Transylvanian basin is more heterogeneous than it was described previously (e.g., Vaselli et al. 1995, Chalot-Prat and Boulier 1997). Based on the textural relationships (e.g. the appearance of symplectites, plagioclase, curved exsolution lamellae) and the thermobarometric results, the evolution of the xenoliths can be outlined, indicating...