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during the evolution of the upper mantle beneath the region. 
Primary clino- and orthopyroxene frequently contain exsolution 
lamella of the other pyroxene (sometimes they are curved). Gar-
net often contains, amphibole, ortho- and clinopyroxene inclu-
sions, exsolved needles of rutile and is always surrounded by sym-
plectitic intergrowth of secondary ortho- and clinopyroxene, spi-
nel and plagioclase.

Thermobarometric calculation was carried out based on ele-
ctron probe microanalysis data of the primary rock forming mine-
rals. Equilibrium pressure was estimated using garnet-orthopy-
roxene barometry (Harley and Green 1982), yielded between 
1.4 and 1.7 GPa, whereas equilibrium temperatures are in the 
range of 1030–1140 °C (based on the garnet-clinopyroxene ther-
mometers of Ellis and Green, 1979). The majority of the prima-
ry clinopyroxenes shows the usual chondrite normalized REE 
pattern of upper mantle clinopyroxenes coexisting with garnet 
(i.e. enriched in LREE and depleted in HREE). However, some 
of them are enriched in HREE, which is a simple enrichment 
in HREE of “normal” clinopyroxenes without changing their 
LREE concentration. The REE pattern of primary garnets shows 
depletion in LREE and enrichment in HREE, whereas that of the 
symplectite coronae around primary garnets is slightly enriched 
in LREE, showing flat REE pattern, sometimes with negative Ce 
anomaly. The bulk trace element composition of the garnet py-
roxenites was calculated based on the garnet and clinopyroxene 
compositions and their modal abundance. The calculated trace 
element patterns are quite similar to each other and very similar 
to MORB composition, too. 

The wide petrologic variability of the studied mantle xeno-
liths shows that the upper mantle beneath the Eastern Transylva-
nian basin is more heterogeneous than it was described previously 
(e.g., Vaselli et al. 1995, Chalot-Prat and Boulier 1997). Based on 
the textural relationships (e.g. the appearance of symplectites, pla-
gioclase, curved exsolution lamellae) and the thermobarometric 
results, the evolution of the xenoliths can be outlined, indicating 

Since the lower crust and the upper mantle cannot be sampled 
and studied directly, deep seated xenoliths from basaltic, kimber-
litic and lamproitic extrusions provide important information on 
the petrologic and geochemical composition, rheological state, 
thermal evolution of the lithosphere. These xenoliths, fragments 
of wall rocks entrained by magmas at upper mantle and lower 
crustal levels, have been carried to the surface by alkaline ba-
salts extreme rapidly, probably in less then 60 hrs (Kushiro et al. 
1976, Mercier 1979). 

Petrologically, the mantle xenoliths are mainly peridotites 
(lherzolite or harzburgites) with lower amount of spinel and 
garnet pyroxenites which represent less than 10 % of the total 
volume of shallow mantle in the Carpathian–Pannonian Region 
based on our experience. Pyroxenite layers (veins? lenses?) can 
be seen as small-scale heterogeneities in the geophysical stud-
ies, however these methods cannot offer a detailed picture of 
the lower crust and the upper mantle (Chen et al. 2001). Garnet 
pyroxenite xenoliths are rare in alkaline basalts; some examples 
are: Israel (Esperanca and Garfunkel 1986, Mittlefehldt 1986), 
SE Australia (Irving 1974, Wilkinson 1974, Griffin et al 1984, 
O’Reilly and Griffin 1995), SW USA (Shervais et al. 1973), Ha-
waii Islands (Wilkinson 1976, Frey 1980) and Eastern Transyl-
vanian Basin, Romania (this study).

The Persani Mts. in the Eastern Transylvanian Basin is the 
easternmost Plio-Pleistocene alkaline basaltic volcanic field in 
the Carpathian–Pannonian Region. The products of the volcanic 
activity are lava flows and pyroclastic rocks, in which peridoti-
tes as xenoliths from the upper mantle can often be found. Be-
sides peridotite xenoliths, spinel and garnet pyroxenites are also 
common. Garnet-bearing pyroxenites composed mainly of pri-
mary garnet, spinel, ortho- and clinopyroxene. The secondary 
mineral phases in the studied xenoliths are plagioclase, amphi-
bole, spinel and ortho- and clinopyroxene. Textural observations 
suggest deformation events and mineral reactions, as the results 
of changes in stress, P-T conditions and melt/rock interaction 
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The Horná Nitra Depression is situated in the western part of the 
Central Western Carpathians, and it is the elongate Upper Mio-
cene to Quaternary structure in the N-S direction. This depression 
is bound by fault structures which were observed and measured 
during the neotectonic research. The aim of this work is to identi-
fy and define the main fault structures on the basis of the relevant 
tectonic geomorphology and structural geology methods used. 
The next step was the dating of fault activity during the Plio-Qua-
ternary Period, and testing its ability to generate seismic events. 
The faults observed in the Horná Nitra Depression have been divi-
ded into three categories.

The first category consists of neotectonic active faults. In the 
Horná Nitra Depression, these consist of the Malá Magura fault 
and the north-west segment of the Pravno fault. These are faults 

whose activity during the Plio-Quaternary Period was able to be 
independently determined using several methods. The Malá Ma-
gura fault is the tectonic structure which divides the Tatric crys-
talline basement of the Malá Magura Mts. from the sedimentary 
fill of the Horná Nitra Depression. It is a typical mountain-front 
fault with a N-S striking and a dipping to the east. The dominant 
component of the movement on the fault plane is a normal slip, 
and the length of the fault is 16.71 km. The neotectonic activity 
is shown by the superposition of the Quaternary alluvial fans, by 
the value of the mountain-front sinuosity, by the mountain-front 
faceting, by the valley floor-to-height ratio, by the valley cross-
section ratio, by the interpretation of aerial photographs and sat-
ellite images, and also by the geophysical measurements. The 
north-west segment of the Pravno normal fault is also neotectoni-

deformation and pressure decrease (upwelling) in the lithospheric 
mantle before alkaline basaltic volcanism. The inferred P-T-path 
of the Persani Mts. garnet pyroxenites agrees well with the previ-
ously studied former garnet peridotites (Falus et al. 2000).

The estimated paleogeotherm (older than the Plio-Pleisto-
cene) beneath the region, shows slightly higher temperature 
than the present day heat flow calculations and, therefore, indi-
cates significant cooling of the upper mantle after the cessation 
of the alkaline basaltic volcanism in the Persani Mts.
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