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ABSTRACT: Conditional cumulative distribution function (ccdf) plays an important role in geostatistical estimation and sequential 
simulation. A variety of method for estimating conditional distribution functions is suggested. These are classified as
parametric and nonparametric. This study is concerned with nonparametric approach, in particular, orthogonal transformed 
indicator method. Orthogonal transformed indicator method (OTIM) is a compromise between the two extremes of 
indicator cokriging and indicator kriging. It requires less estimation and modelling over indicator cokriging and uses 
more information over indicator kriging. The idea behind this approach is to transform the indicator functions into a set 
of spatially orthogonal functions (factors) and to use the autokrigeability property of these functions. 
This paper includes an application of OTIM to estimation and simulation of the thickness data of the upper lignite seam 
of the Kalburçayiri field, Kangal Basin, Sivas, Turkey. The Cholesky-spectral algorithm is used as orthogonalization 
algorithm.   
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Introduction
In mining and geological analysis the assessment of uncertain-
ty about an unknown value at an unsampled location is one of 
the most important problems. The unknown values could be 
estimated by linear geostatistical techniques (variogram, krig-
ing). However, linear geostatistics contains many problems due 
to its data independent character. In these techniques the esti-
mated values are smoothed, showing less variability in respect 
to real one. This has an important effect in all phases of a min-
ing project, including feasibility, mine planning and production 
scheduling. One way around this problem is to use conditional 
distribution functions that completely solve data-independence 
problem. A variety of method for estimating conditional distri-
bution functions is suggested. These are classified as parametric
and nonparametric. This study is concerned with nonparametric 
approach, especially orthogonal transformed indicator method 
of this approach. 

The conditional distribution functions and their nonpar-
ametric estimation are described in Goovaerts (1997), Ter-
can and Kaynak (1999), and Tercan (1999). Orthogonal trans-
formed indicator kriging (OTIM) is a compromise between the 
two extremes of indicator cokriging and indicator kriging. It 
requires less estimation and modeling over indicator cokrig-
ing and uses more information over indicator kriging. The 
idea behind this approach is to transform the indicator func-
tions into a set of spatially orthogonal functions (factors) and 
to use the autokrigeability property of these functions (Tercan 
1999). Orthogonalization of indicator function relies on prin-
cipally the decomposition of the indicator variogram matrices 
as a matrix product. Depending on the type of decomposition, 
varying degrees of the spatial orthogonality among the fac-
tors are produced. Tercan (1999) considers three decomposi-
tion algorithms: Spectral (SPEC), Symmetric (SYMM) and 
Cholesky-Spectral (CHSP) decomposition. The results of his 
studies indicate that the estimation algorithm based on the 

CHSP decomposition performs better than the other decompo-
sition algorithms.

This paper introduces estimating conditional distributions 
based on orthogonal transformed indicator method and applies 
it to estimation and simulation of the upper lignite seam thick-
ness of the Kalburçayiri field, Kangal Basin, Sivas, Turkey. The 
Cholesky-spectral algorithm is used as orthogonalization algo-
rithm due to its superior performance among others. This study 
is mainly based on the doctoral work of the author (Cengiz 
2003).

Estimation of Conditional Distribution 
Based on Cholesky-Spectral 
Decomposition
Indicator variable I(x;zk) is obtained by coding the Z(x) random 
variable as 0 and 1.
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The sequence of indicator variables which obtained by defining
it for more than one cut-off value [zk, k = 1, ..., K] is defined as
indicator vector.

I(x;z) = [I(x;z1)... I(x;zK)] (2.2)
Conditional distribution function is equal to the expected value 
(E[x]) of indicator variable (Eq. 2.3). 

E[I(x;zk)|Zn] = 1.F(x;zk|Zn) + 0.[1 – F(x;zk|Zn] = F(x;zk|Zn) (2.3)
So, the conditional distribution functions F(x) can be obtained 
by estimation (in equations denoted by “*”) of the expected val-
ues of indicator variables (Eq.2.4).

F(x;zk|Zn) = I(x;zk)* (2.4)
The conditional distribution functions are obtained by estima-
tion of indicator vectors. When OTIM is used for estimation of 
conditional distribution functions, the indicator vector (Eq. 2.2) 
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is transformed into factors Y(x) or random functions, that shows 
orthogonality at each distance.

Y(x) = I(x;z)P (2.5)
Where; P, denotes a K×K full ranked matrix that linearly trans-
form the indicator vector into factors. Factors are used as krig-
ing estimators. 

Y* (x) = [∑N
α=1

λ1(xα) Y1(xα).....∑
N

α=1
λK(xα) YK(xα)] (2.6)

Here, λk(xα), k = 1, …, K, denote the kriging weights. Once the 
vector of the factor estimators, Y*(x) is obtained an inverse 
transformation will provide and estimate of the conditional dis-
tiribution function vector:

I*(x;z) = Y*(x) P–1, (2.7)
where the superscript –1 denotes inverse.

In this study the matrix P, is calculated by using Cholesky-
Spectral (CHSP) decomposition. The CHSP algorithm uses 
both the Cholesky and spectral decompositions and decompos-
es the two indicator variogram matrices ΓI (h1) and ΓI (h2) for 
h2 > h1. The indicator variogram function matrix is a K × K ma-
trix that contains the indicator direct variograms along its major 
diagonal and the indicator cross variograms off that diagonal 
(Eq. 2.8):
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The CHSP decomposes these matrices such that
ΓI (h2) = XXT

ΓI (h1) = XDXT X = GS (2.9)
where the matrix ΓI(h2) is positive definite, G is the lower tri-
angular matrix from the Cholesky decomposition of ΓI(h1) 
(Eq. 2.10):

ΓI (h1) = GGT,  (2.10)
S and D are orthogonal and diagonal matrices from the spec-
tral decomposition of C = G-1 ΓI (h2)(G-1)T. In this equation the 
superscript “T” is denote the transpose of that matrix. By using 
these equations the factors and factor variograms are calculated 
as Equation (2.11):

Y(x) = I(x;z)(XT)-1

ΓY (h2) = X-1 ΓI (h2)(XT)-1 = IK   (2.11)
ΓY (h1) = X-1 ΓI (h1)(XT)-1 = D

where, IK is the K × K identity matrix. The orthogonality is guar-
anted at two lag distances h1 and h2. Note that because (XT)-1 is 
of full rank and ΓI(h2) is positive definite, one can write:

ΓI (h1)(XT)-1 = ΓI (h2)(XT)-1 D (2.12)
and in fact, this is the matrix form of the generalized eigenvalue 
problem with the matrices ΓI(h2) and ΓI(h1). 

Sequential Similation

Consider the simulation of variable grade Z at N grid nodes 
xα conditional to the data set [z(xα), α = 1, …, n]. Sequential si-
mulation (Gomez-Hernandez and Srivastava 1990) amounts to 
modelling the conditional distribution function then sampling 
it at each of the grid nodes visited along a random sequence. 
When a nonparametric approach is considered an indicator-

based method is used. To ensure reproduction of the grade 
variogram model, each ccdf is made conditional not only to 
the original n data but also to all values simulated at previ-
ously visited locations. Multiple realizations are obtained by 
repeating the entire sequential drawing process. Sequential si-
mulation starts with the transform of an indicator vector into 
the spatially orthogonal factors (Tercan A.E. and Kaynak T. 
2001).

Case Study
Definition of Field

The orthogonal transformed indicator method is used for esti-
mation and simulation of the thickness data of the upper lig-
nite seam of the Kalburçayiri field, Kangal Basin, Sivas, Turkey
(Figure 1.). The field includes two coal seams. The run-of-mine
coal is directly fed into a power plant. Totally 222 drillings were 
performed in the field and about 170 of them made intersection
with coal. Figure 2 shows the collar positions of drill holes. The 
stratigraphy of the study area is shown in the Figure 3.

The field was subjected to different geostatistical studies
(Tercan 1996a, Tercan 1996b, Tercan 1998a, Tercan 1998b). In 
these studies, indicator kriging was used as an estimation meth-
od. The 170 thickness values were used. The average coal thick-
ness is 7.05 m. The summary statistics and frequency distribu-
tion of thickness data are shown on Figure 4 and directional ex-
perimental variograms are shown in the Figure 5.

The directional variograms indicate the presence of ani-
sotropy in the directions of N30W and N15E. The variogram 

Fig. 1. Kalburçayiri field, Kangal Basin, Sivas, Turkey.
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model is spherical1 with nugget effect 5.0, partial sill 14.0 and 
range 1150 m in NW direction and 650 m in NE direction.

Estimation of conditional cumulative distribution 
functions
The first step in sequential simulation is estimation of conditio-
nal distribution functions. As there are no economic and tech-
nical restrictions, the nine cut off values corresponding to the 
nine deciles of the reference distribution are used: these are: 1.5, 
2.4, 3.8, 5.8, 7.4, 8.6, 9.4, 11.0, 12.2. The conditional cumula-
tive distribution functions were computed for nine cut off values 
using the coal thickness data of Kalburçayiri lignite field. The
IK3D from GSLIB (Deutsch and Journel 1998) is modified for
computations. The variance and means of distributions are com-
puted using POSTIK from GSLIB (Deutsch and Journel 1998). 
The image map of real thickness data on Kalburçayiri coal field
is shown on Figure 6.  

The simulation of Kalburçayiri lignite field thickness 
values using OTIM
The simulations of Kalburçayiri lignite field thickness values
are performed using OTIM. The simulations are made condi-
tional to coal thickness value of the 170 drillings. Firstly the 
transformation matrices and factors are produced. SISIM given 
in Deutsch & Joumel (1998) is modified in order to handle with
OTIM. The CHSP technique is used as decomposition method 
in OTIM. The variogram parameters (C0: nugget effect, C: sill 
and a: range value) of estimated factors are shown in the Table 1. 
The variograms are computed in the same direction with the real 
dataset anisotropy and modelled with spherical model. 

Fig. 2. The coal positions of the drillholes.  – drilhole made in-
tersection with coal,  – drillhole without intersection with coal.

Fig. 3. The stratigraphy of the study area (modified from Sen
1999).

Fig. 4. The summary statistics and frequency distribution of 
thickness.

1 Spherical model is a model used in geostatistics and have a sill 
value.In this model:

γ (h) = C0 + Cx [1.5x ha  
– 0.5x (h

a )3] ; h ≤ a

γ (h) = C0 + C ; h > a

γ (h) = 0 ; h = 0
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OTIM simulations are realized conditional to real data. The 
experimental variograms in NW30 and NE15 directions of sim-
ulated thickness and real thickness data are shown in Figure 7 

and Figure 8 Figure 9 shows the frequency distributions of sim-
ulated thickness and real thickness data.

Figure 9 shows that the simulated values have the same fre-
quency distribution as the real data. Despite to reproducing the 
spatial variability in N30W, there are some discrepancies (fluc-
tuations) between real and simulated thickness variograms in 
N15E direction. 

Usage of simulation values
The purpose of the simulation is to make the corresponding data 
known at every point of the field. In this study, a grid field at
125 m intervals is generated. Figure 7 shows the spatial distribu-
tion of 658 conditionally simulated data on 125 m intervals at 
Kalburçayiri field.

Conclusions

Simulation of a field is described as the generation of the nu-
meric model of that field. Once the simulated values were gen-
erated, it can be used in many phases of mining such as mine 
evaluation, planning, reserve calculation, selection of mine 
equipment. The Orthogonal Transformed Indicator Method 
provides more reliable and robust  results over other indicator 
methods in geostatistical simulation. 

Fig. 5. The directional experimental variograms of thickness 
data.

Fig. 6. The image map of mean type (E-type) estimation.
Fig. 8. The experimental variograms in NE15 directions of 
simulated thickness and real thickness data.

Fig. 7. The experimental variograms in NW30 directions of 
simulated thickness and real thickness data.

Cut-off
Values

Nugget 
 Effect C0

Sill
Value C

Range (m)
aNW30

Range (m)
 aNE15

1.463 0.200 1.000 2200 700
2.37 0.250 1.000 1750 900

3.804 0.200 0.800 2000 900
5.82 0.500 0.300 1700 500
7.38 0.700 0.500 1200 650

8.644 0.750 0.250 1500 650
9.443 1.000 0.000 1.000 1.000

11.026 1.000 0.000 1.000 1.000
12.241 1.000 0.000 1.000 1.000

Tab. 1. Variogram parameters of factors.
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