South Bohemian HP Granulites with Lenses of HP/UHP Mafic and Ultramafic Rocks

Shah Wali FARYAD1, Jan FRANĚK2, Stanislav VRÁNA2 and Martin SVOJTKA3

1 Institute of Petrology and Structural Geology, Charles University, Albertov 2, 128 43 Prague 2, Czech Republic
2 Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic
3 Institute of Geology, Academy of Sciences v.v.i, Rozvojová 269, 165 00 Prague 6, Czech Republic

Position and structure of the granulite massifs

Granulite facies rocks (mostly felsic granulites and granulitic gneisses) with lenses and boudins of serpentinitized garnet and spinel peridotite, pyroxenite, retrogressed eclogite comprise several large, oval-shaped massifs (the Blanský Les, Křišťanov, Prachatice, Lišov, and Krasejovka Granulite Massifs) in the south-western part of the Moldanubian zone (Fig. 1). The granulite massifs also contain lenses of pyroxene-bearing granulite of intermediate composition, whose relation to felsic granulite is unclear (Kodym, 1972; Vrána, 1992). The garnet or spinel peridotites and garnet pyroxenites systematically form discontinuous lenses along the margins of all the granulite massifs. Similar to other granulites in the Moldanubian zone, the southern Bohemian granulites are assigned to the high-grade Gföhl Unit. The granulite massifs are surrounded by amphibolite facies metamorphic rocks of the Monotonous and Varied groups (e.g., Rajlich et al., 1986).

The Blanský Les Granulate Massif preserves the most complete structural record. The oldest fabric is represented by scarce remnants of a compositional banding (Vrána, 1979; Franěk et al., 2006). The subsequent, better-preserved fabric developed under granulite facies conditions. This is a mylonitic foliation, dipping moderately to steeply to the W or E, are defined by elongation of Qtz ribbons and Bt aggregates emphasized by a weak compositional banding. The early fabrics were extensively reworked by steep amphibolite facies mylonitic foliation, which constitutes an ~18-km-wide sigmoidal asymmetric fold parallel to the margins of the massif. Both of the steep fabrics developed during the two-step exhumation of the granulites from lower-crustal conditions to their present tectonic position.

The oldest fabric preserved in the Křišťanov and Prachatice bodies correspond to the steep amphibolite-facies foliation described above. Compared with the Blanský Les, the orientation of these fabrics is less complex. They form between ~15 and ~7 km-wide, large-scale, single folds parallel to the margins of each massif. The folds are characterised by steep axes and roughly N to S-trending, steep axial planes, similar to the Blanský Les Granulate. This arcuate steep fabric was heterogeneously reworked by a younger ductile deformation, which resulted in development of shallowly NW-dipping to flat-lying foliation.

The rocks in the Monotonous and Varied groups are characterised by steep amphibolite facies foliation, generally trending NNE–SSW, which is similar to and concordant with that in granulites (Vrána, 1979). The steep foliation in the Lhenice Zone forms a tight, vertical, N–S elongated, fan-like pattern, while in the Libin Zone it dips steeply to the SW beneath the Křišťanov granulate. Regionally, the most prominent fabric is a flat foliation that generally strikes NE–SW, dipping at gentle angles mainly to the NW. Only in the vicinity of the granulate massifs does it get disturbed and “flow” around the individual bodies. The Lhenice Zone, with a generally higher degree of partial melting, probably represents a remnant of Variscan lower-crustal meta-sediments trapped by felsic granulites during their ascent and exhumation.

Four localities will be visited in the southern part of the Bohemian Massif (Fig. 1), which include two stops (4-1 and 5-1) in granulite massifs with HP granulites and lenses of HP/UHP mafic and ultramafic rocks, a stop (4-2) in high-grade gneiss that is structurally beneath the granulite massifs, and a stop (4-3) in eclogites in the Monotonous Unit.
Granulite petrology

The origins and protoliths of granulites in the Bohemian Massif have long been a subject of discussion. According to Fiala et al. (1987), the granulites were derived from felsic volcanics or volcanosedimentary rocks. Alternatively, it has been proposed that granulite originated from dry, HP-HT partial melting of sedimentary lithologies (Vrana, 1989; Jakeš, 1997; Kotková and Harley, 1999, 2010) or of granitoid/acid volcanic rocks (Vrana, 1989; Janoušek et al., 2004). The granulites have been extensively re-equilibrated under lower-pressure granulite and subsequent amphibolite facies conditions. Relatively well-preserved felsic varieties, which consist of two feldspars, quartz, garnet, kyanite, and rutile, are present in the Blansky Les Massif (Vrana, 1992; Fiala et al., 1987). The presence and amount of biotite and sillimanite or spinel depend on the degree of re-equilibration. Garnet has a composition in the range, Alm48-62Prp26-32Grs25-04Sps1-2, and is usually compositionally zoned, with a decrease of Ca and XMg toward the rim. However, some dark, Ca-rich varieties may preserve prograde zoning in the central part, where Mn and XFe decrease outward, but Ca remains constant (Fig. 3). The rims of garnet show a strong
Retrograde zoning, with a decrease in Ca and Mg, an increase in Fe, and a slight increase in Mn. In addition to rutile, garnet contains columnar or euhedral inclusions filled mostly by albite, but K-feldspar and plagioclase (An14 and An43) also occur (Figs. 4a, b). These inclusions occur in the Ca-rich internal parts of garnet and usually contain a mixture of Fe oxide + titanite. They are interpreted as pseudomorphs after a Na-rich phase, such as jadeite, paragonite, or glaucophane, or, in the case of plagioclase, after a mixture of paragonite and margarite, which were stable during the prograde PT path to eclogite facies metamorphism (Faryad et al., 2010).

The intermediate compositional variety of granulate consists of quartz, garnet, clinopyroxene, orthopyroxene, plagioclase, biotite, quartz, rutile, and ilmenite. The garnet shows a flat profile in the core, with a composition of Grs32, Prp25, Alm45, and retrograde zoning near the rim (Grs24, Prp21, Alm51). Omphacite (Jd28) occurs as an inclusion in garnet (Fig. 4c), and symplectite of diopside and plagioclase after omphacite is partly enclosed in the outer part of the garnet. Clinopyroxene in the matrix is diopside, with XMg about 0.78. Orthopyroxene occurs in a corona around quartz in contact with garnet (Fig. 4d), and its XMg value ranges from 0.52 to 0.60.

PT conditions estimated for both felsic and mafic granulites are in the range of 850–1050 °C and 15–20 kbar (Carswell and O’Brien, 1993; Owen and Dostal, 1996; Kotková and Harley, 1999; Štípská and Powell, 2005). A higher pressure of 2.5 GPa at 700 °C during the prograde stage was proposed by Faryad et al. (2010). The granulites subsequently followed a nearly isothermal decompression path to mid-crustal level pressures with an overprint at 800–900 °C and 8–12 kbar and a final, near-isobaric cooling.

Most U-Pb ages for metamorphic zircon and monazite from felsic granulites yield ca. 338–340 Ma (van Breemen et al., 1982; Aftalion et al., 1989; Wendt et al., 1994; Kröner et al., 2000; Sláma et al., 2008; Svojtka et al., 2009). However, some older ages of 340–350 Ma by U-Pb zircon and Sm-Nd dating were obtained by Kröner et al., 2000 and Wendt et al., 1994. U-Pb ages for protolith magmatic zircon are ca. 370 Ma (Wendt et al., 1994). Zircons from amphibolite facies Crd patches in granulite yield an age of 338.2 ±3.2 Ma (Kröner et al., 2000). Similar ages of 337 Ma by U-Pb on zircon for felsic granulites were obtained by Sláma et al. (2007).

References

Fig. 4. Backscattered electron images of garnet crystals with inclusions of albite + Fe-oxides (after clinopyroxene, Na-amphibole, or paragonite?).

Stop 4-1 (Day 4). Garnet Peridotites and Pyroxenites, Quarry Pod Libinem

Coordinates: N48°59′59.4″ E14°01′21.0″

Shah Wali FARYAD¹, Jan FRANĚK² and Stanislav VRÁNA²

¹ Institute of Petrology and Structural Geology, Charles University, Albertov 2, 128 43 Prague 2, Czech Republic

² Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic

The large active quarry Pod Libinem is located directly at the SW margin of the Prachatice Granulite Massif (Fig. 1). The felsic granulites exhibit penetrative steep fabric and contain bodies of partially serpentinitized Grt peridotites and pyroxenites, which form up to 10-m-large boudins. Granulite consists of feldspars, quartz, garnet, biotite, and kyanite (sillimanite), cordierite and accessory, spinel, rutile, zircon, graphite and apatite. Quartz forms mostly platy grains that define foliation of the rocks. Grain boundaries of quartz grains are followed by fine-grained perthitic K-feldspar, plagioclase and locally by biotite and relics of kyanite. Garnet is replaced by biotite or by cordierite, and kyanite is rimmed by spinel or totally replaced by sillimanite. Cordierite occurs along thin veins but mostly forms corona around garnet and finally replaced the whole garnet. Plagioclase forming symplectite with sapphire is also present. Granulite is locally penetrated by granitic veins.

Garnet peridotites are strongly serpentinitized. Pyroxene-rich varieties may contain up to 5- to 7-cm-large garnet porphyroblasts that are mostly replaced by symplectites of pyroxene + amphibole + spinel. They contain inclusions of clinopyroxene. In addition to isolated red-brown spinel, symplectites of spinel + orthopyroxene (former garnet), overgrown by amphibole, are also present. Garnet in peridotite forms relic grains, which have homogeneous composition with Mg and Cr con-