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Stop 7-4 (Day 7). Eclogite, Borek
Coordinates: N49°47'34.3"  E15°34'41.3"

Fig. 12. (a) Al X-ray map of a garnet porphyroblast with inclusions of quartz (black) and Na-Ca amphibole (dark-grey) from the 
Borek eclogite. The matrix omphacite is replaced by amphibole+plagioclase symplectuite. (b) Rim-to-rim compositional profile for
garnet prophyroblast in (a), illustrating variations in mol fractions of almandine, pyrope, grossular and spessartine.

Omphacite occurs as relics surrounded by symplectite in the 
matrix but may occur as inclusions in the rims of garnet. It has 
a jadeite content between 32–37 mol % and about 10–13 mol % 
aegirine content. Amphibole enclosed in garnet is taramite, in 
which the B site is occupied by 0.51 to 0.76 Na atoms per for-
mula unit (a.f.u.) and the A site contains 0.6-0.8 Na+K a.f.u. 
(the ferric/ferrous ratio in amphibole was calculated by normali-
zation to 13 cations and 46 charges). The XMg = Mg /(Mg + Fe2+) 
ratio is about 0.5.

The pattern of compositional zoning and the presence of 
Na-Ca amphibole inclusions in garnet from eclogite suggest 
a prograde metamorphism from high-temperature blueschist 

facies to eclogite facies conditions. Temperatures of 632 ± 23, 
616 ± 34 and 690 ± 46 °C, calculated at 2.2 GPa, were obtained 
using the garnet-pyroxene thermometers of Ravna (2000), Ai 
(1994) and Ganguly et al. (1996), respectively. Using the com-
positions of amphibole inclusionsnband adjacent garnet and om-
phacite, a pressure of 2.3 GPa at 590 °C is calculated, based on 
end-member reactions and the PTGIBS program (Brandelik and 
Massonne, 2004) (Fig. 13). 

Summary

The lithological and metamorphic characteristics of HP/UHP 
rocks from the Kutná Hora complex and the adjacent Monoto-
nous unit suggest subduction of crustal and mantle fragments 

Eclogite at this stop is enclosed by serpentinite and located in the 
medium-grade Monotonous unit (Synek and Oliveriová, 1993). 
The eclogite and serpentinite occur in a ca. 400 × 250 lens-shaped 
body in an abandoned quarry, now used as a water reservoir, 
about 900 m west of the village of Borek. Two sets of fabrics, 
dipping steeply to the NW and SW, occur within the strongly ser-
pentinised peridotite. Their origin and mutual relations are un-
clear due to strong serpentinization. The SW dipping fabric is par-
allel to the orientation of the eclogite layer, which occurs along 
the SW margin of the peridotite. The eclogite exhibits a foliation 
defined by the alignment of garnet grains and compositional lay-
ering and is concordant with the NW fabric in the peridotite. 

The serpentinized peridotite consists of harzburgite with mi-
nor lherzolite and dunite (Fiala and Jelínek, 1992). In addition 
to olivine (Fo90) it contains orthopyroxene (En90), minor di-
opsidic clinopyroxene and accessory spinel. The eclogite forms 
a 60–70 m thick lens-like body in the serpentinite. Eclogite has 
the composition of tholeitic basalt and consists of garnet, om-
phacite, and quartz, with Na-Ca amphibole inclusions in garnet. 
The eclogite has been partly retrogressed, resulting in the re-
placement of omphacite by amphibole-plagioclase symplectite 
and the development of thin coronas of plagioclase and amphib-
ole around garnet.

Garnet contains abundant inclusions of quartz and Na-Ca 
amphibole (Fig. 12a). It shows prograde zoning with high Mn 
and Ca in the core (Grs28Prp20Alm48Sps4) and high Mg at the rim 
(Grs19Prp32Alm48Sps1), while Fe is almost constant (Fig. 12b). 
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from different geotectonic positions. Some garnet peridotites 
with layers of garnet pyroxenites and lenses of eclogites seem 
to represent fragments of lithospheric mantle that were incorpo-
rated in the subduction zone, where they crossed the spinel sta-
bility field to the garnet stability field and reached a maximum
pressure of 4.0 GPa/1000 °C (Fig. 14). Different rock composi-
tions and garnet zoning in eclogite within garnet peridotite indi-
cate that some eclogites could have been tectonically emplaced 
into peridotite during different stages subduction and exhuma-
tion. Calculated PT conditions (~3.5 GPa, 950 °C) and the pres-
ervation of prograde-zoned garnet in kyanite-bearing eclogites 
within granulite suggest their subduction to the coesite stability 
field, followed by rapid exhumation and cooling, as indicated by
the coexistence of retrograde high-grossular garnet with amphi-
bole and plagioclase (point A in Fig. 11). In contrast, the present 
mineral assemblages in granulite indicate maximum pressures 
of 2.2–2.3 GPa at 900 °C. However, the association of granulite 
with eclogite and the preservation of zoning and inclusion pat-
terns in garnet (Faryad et al., 2010) suggest that some granulites 
could have reached deeper levels in the subduction zone than 
that indicated by their calculated P-T conditions. During sub-
sequent, buoyancy-enhanced exhumation, granulite could have 
entrained denser mantle rocks during their return flow up the
subduction channel. The presence of the Borek MT eclogite in 
the Monotonous unit suggests that this may have been part of an 
accretionary wedge into which the HP/UHP Kutná Hora Com-
plex was tectonically emplaced. 
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